有限混合概论

P. Green
{"title":"有限混合概论","authors":"P. Green","doi":"10.1201/9780429055911-1","DOIUrl":null,"url":null,"abstract":"Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. In this chapter we describe the basic ideas of the subject, present several alternative representations and perspectives on these models, and discuss some of the elements of inference about the unknowns in the models. Our focus is on the simplest set-up, of finite mixture models, but we discuss also how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas traversed in the rest of this book.","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Introduction to Finite Mixtures\",\"authors\":\"P. Green\",\"doi\":\"10.1201/9780429055911-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. In this chapter we describe the basic ideas of the subject, present several alternative representations and perspectives on these models, and discuss some of the elements of inference about the unknowns in the models. Our focus is on the simplest set-up, of finite mixture models, but we discuss also how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas traversed in the rest of this book.\",\"PeriodicalId\":12943,\"journal\":{\"name\":\"Handbook of Mixture Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Mixture Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429055911-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

混合模型已经存在了150多年,作为一种直观简单实用的工具,它丰富了可用于建模数据的概率分布集合。在本章中,我们描述了该主题的基本思想,提出了这些模型的几种替代表示和观点,并讨论了模型中未知因素的一些推断要素。我们的重点是最简单的设置,有限的混合模型,但我们也讨论了各种简化的假设如何可以放松,以产生丰富的景观建模和推理思想贯穿本书的其余部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction to Finite Mixtures
Mixture models have been around for over 150 years, as an intuitively simple and practical tool for enriching the collection of probability distributions available for modelling data. In this chapter we describe the basic ideas of the subject, present several alternative representations and perspectives on these models, and discuss some of the elements of inference about the unknowns in the models. Our focus is on the simplest set-up, of finite mixture models, but we discuss also how various simplifying assumptions can be relaxed to generate the rich landscape of modelling and inference ideas traversed in the rest of this book.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信