{"title":"微波表面波等离子体化学气相沉积及透明电极对碳纳米壁性能的直流偏置影响","authors":"S. Ichimura, S. Ichimura, Y. Hayashi, M. Umeno","doi":"10.14723/TMRSJ.41.229","DOIUrl":null,"url":null,"abstract":"We synthesized carbon nanowalls on a Si substrate by microwave surface -wave plasma chemical vapor deposition. The Raman scattering ID/IG ratio was changed by altering the DC bias applied to the growth substrate and the decrease in ID/IG with increasing DC bias appears to arise from the growing length of the carbon nanowalls. The ultrasonically separated carbon nanowalls in ethanol exhibited strong 2D -peak intensity and significant graphitization. A graphite layer of approximately 10 nm grew parallel to the substrate initially, and the carbon nanowalls grew on top of that. When the nanowalls were dispersed in ethanol and spin-coated onto PET, they exhibited a transmittance of 81% and a sheet resistance of 52 kΩ/□ without reduction treatment used in the graphene oxide.","PeriodicalId":23220,"journal":{"name":"Transactions-Materials Research Society of Japan","volume":"25 1","pages":"229-233"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DC Biasing Effects on Properties of Carbon Nanowalls by Microwave Surface-Wave Plasma Chemical Vapor Deposition and Towards Transparent Electrode\",\"authors\":\"S. Ichimura, S. Ichimura, Y. Hayashi, M. Umeno\",\"doi\":\"10.14723/TMRSJ.41.229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We synthesized carbon nanowalls on a Si substrate by microwave surface -wave plasma chemical vapor deposition. The Raman scattering ID/IG ratio was changed by altering the DC bias applied to the growth substrate and the decrease in ID/IG with increasing DC bias appears to arise from the growing length of the carbon nanowalls. The ultrasonically separated carbon nanowalls in ethanol exhibited strong 2D -peak intensity and significant graphitization. A graphite layer of approximately 10 nm grew parallel to the substrate initially, and the carbon nanowalls grew on top of that. When the nanowalls were dispersed in ethanol and spin-coated onto PET, they exhibited a transmittance of 81% and a sheet resistance of 52 kΩ/□ without reduction treatment used in the graphene oxide.\",\"PeriodicalId\":23220,\"journal\":{\"name\":\"Transactions-Materials Research Society of Japan\",\"volume\":\"25 1\",\"pages\":\"229-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions-Materials Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14723/TMRSJ.41.229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions-Materials Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14723/TMRSJ.41.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DC Biasing Effects on Properties of Carbon Nanowalls by Microwave Surface-Wave Plasma Chemical Vapor Deposition and Towards Transparent Electrode
We synthesized carbon nanowalls on a Si substrate by microwave surface -wave plasma chemical vapor deposition. The Raman scattering ID/IG ratio was changed by altering the DC bias applied to the growth substrate and the decrease in ID/IG with increasing DC bias appears to arise from the growing length of the carbon nanowalls. The ultrasonically separated carbon nanowalls in ethanol exhibited strong 2D -peak intensity and significant graphitization. A graphite layer of approximately 10 nm grew parallel to the substrate initially, and the carbon nanowalls grew on top of that. When the nanowalls were dispersed in ethanol and spin-coated onto PET, they exhibited a transmittance of 81% and a sheet resistance of 52 kΩ/□ without reduction treatment used in the graphene oxide.