R. Prichard, W. Strasser, Scott Leonard, B. Walsh
{"title":"模拟一种减少COVID-19在医院病房中空气传播的新方法","authors":"R. Prichard, W. Strasser, Scott Leonard, B. Walsh","doi":"10.1615/tfec2021.bio.036776","DOIUrl":null,"url":null,"abstract":"In this paper, we used a computational fluid dynamics model to evaluate the effects of a novel medical apparatus (“Felix-1”) on the spread of contagion in a hospital room. We found that Felix-1, consisting of nasal cannula and an oxygen mask, captured 96% of the mass of exhaled particles ranging from 0.1µm to 100µm. This is more effective than a surgical mask. It was less effective at capturing small particles, but their mass is insubstantial. The caregivers inhaled only 24 parts per billion of particle mass exhaled by the patients. Our model included a full hospital room with two patients and four caregivers, each represented using medical imagery and realistic nonuniform breathing rate curves. Room ventilation was also modeled, and we allowed over a minute of flow time for the room to reach quasi-steady-state, which we evaluated using flow statistics and particle tracking results. © 2021 Begell House Inc.. All rights reserved.","PeriodicalId":20474,"journal":{"name":"Proceeding of 5-6th Thermal and Fluids Engineering Conference (TFEC)","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODELING A NOVEL METHOD TO DIMINISH AIRBORNE COVID-19 TRANSMISSION IN A HOSPITAL ROOM\",\"authors\":\"R. Prichard, W. Strasser, Scott Leonard, B. Walsh\",\"doi\":\"10.1615/tfec2021.bio.036776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we used a computational fluid dynamics model to evaluate the effects of a novel medical apparatus (“Felix-1”) on the spread of contagion in a hospital room. We found that Felix-1, consisting of nasal cannula and an oxygen mask, captured 96% of the mass of exhaled particles ranging from 0.1µm to 100µm. This is more effective than a surgical mask. It was less effective at capturing small particles, but their mass is insubstantial. The caregivers inhaled only 24 parts per billion of particle mass exhaled by the patients. Our model included a full hospital room with two patients and four caregivers, each represented using medical imagery and realistic nonuniform breathing rate curves. Room ventilation was also modeled, and we allowed over a minute of flow time for the room to reach quasi-steady-state, which we evaluated using flow statistics and particle tracking results. © 2021 Begell House Inc.. All rights reserved.\",\"PeriodicalId\":20474,\"journal\":{\"name\":\"Proceeding of 5-6th Thermal and Fluids Engineering Conference (TFEC)\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of 5-6th Thermal and Fluids Engineering Conference (TFEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/tfec2021.bio.036776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of 5-6th Thermal and Fluids Engineering Conference (TFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/tfec2021.bio.036776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
MODELING A NOVEL METHOD TO DIMINISH AIRBORNE COVID-19 TRANSMISSION IN A HOSPITAL ROOM
In this paper, we used a computational fluid dynamics model to evaluate the effects of a novel medical apparatus (“Felix-1”) on the spread of contagion in a hospital room. We found that Felix-1, consisting of nasal cannula and an oxygen mask, captured 96% of the mass of exhaled particles ranging from 0.1µm to 100µm. This is more effective than a surgical mask. It was less effective at capturing small particles, but their mass is insubstantial. The caregivers inhaled only 24 parts per billion of particle mass exhaled by the patients. Our model included a full hospital room with two patients and four caregivers, each represented using medical imagery and realistic nonuniform breathing rate curves. Room ventilation was also modeled, and we allowed over a minute of flow time for the room to reach quasi-steady-state, which we evaluated using flow statistics and particle tracking results. © 2021 Begell House Inc.. All rights reserved.