通过多导数指数拟合格式的Schrödinger型方程的有效数值逼近

G. Psihoyios, T. E. Simos
{"title":"通过多导数指数拟合格式的Schrödinger型方程的有效数值逼近","authors":"G. Psihoyios,&nbsp;T. E. Simos","doi":"10.1002/anac.200310017","DOIUrl":null,"url":null,"abstract":"<p>In this paper an exponentially-fitted multiderivative method is developed for the numerical integration of the Schrödinger equation. We call the method multi-derivative since it uses derivatives of orders two and four. An application to the resonance problem of the radial Schrödinger equation indicates that the new method is more efficient than the Numerov method and other known methods found in the literature. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"205-215"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310017","citationCount":"24","resultStr":"{\"title\":\"Effective Numerical Approximation of Schrödinger type Equations through Multiderivative Exponentially-fitted Schemes\",\"authors\":\"G. Psihoyios,&nbsp;T. E. Simos\",\"doi\":\"10.1002/anac.200310017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper an exponentially-fitted multiderivative method is developed for the numerical integration of the Schrödinger equation. We call the method multi-derivative since it uses derivatives of orders two and four. An application to the resonance problem of the radial Schrödinger equation indicates that the new method is more efficient than the Numerov method and other known methods found in the literature. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"205-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200310017\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了Schrödinger方程数值积分的指数拟合多导数方法。我们称这种方法为多重导数,因为它使用了二阶和四阶的导数。应用于径向Schrödinger方程的共振问题表明,新方法比Numerov方法和文献中发现的其他已知方法更有效。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Numerical Approximation of Schrödinger type Equations through Multiderivative Exponentially-fitted Schemes

In this paper an exponentially-fitted multiderivative method is developed for the numerical integration of the Schrödinger equation. We call the method multi-derivative since it uses derivatives of orders two and four. An application to the resonance problem of the radial Schrödinger equation indicates that the new method is more efficient than the Numerov method and other known methods found in the literature. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信