高分辨率4H-SiC外延辐射探测器的制造和表征,用于具有挑战性的反应堆剂量测定环境

K. Mandal, S. Chaudhuri, F. Ruddy
{"title":"高分辨率4H-SiC外延辐射探测器的制造和表征,用于具有挑战性的反应堆剂量测定环境","authors":"K. Mandal, S. Chaudhuri, F. Ruddy","doi":"10.1051/epjconf/202327801003","DOIUrl":null,"url":null,"abstract":"Reactor dosimetry environments require radiation detectors that are capable of operating at high temperatures in extremely high neutron and gamma-ray dose rates. Silicon carbide (SiC) is one of the most promising wide bandgap semiconductors (3.27 eV) for harsh environment applications due to its radiation hardness, high breakdown voltage, high electron saturation velocity, and high thermal conductivity. In this paper, we summarize the prospect of Schottky barrier radiation detectors, fabricated on highly crystalline low-defect detector-grade n-type 4H-SiC epitaxial layers with thickness ranging from 20 to 250 lm, for harsh environment applications. A comprehensive discussion on the characterization of the parameters that influence the energy resolution has been included. The usage of electrical and radiation spectroscopic measurements for characterizing the junction and rectification properties, minority carrier diffusion lengths, and energy resolution has been elaborated. Characterization of crucial factors that limit the energy resolution of the detectors such as charge trap centers using thermally stimulated transient techniques is summarized. Finally, the effect of neutron fluence on the performance of the 4H-SiC detectors is discussed.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication and characterization of high-resolution 4H-SiC epitaxial radiation detectors for challenging reactor dosimetry environments\",\"authors\":\"K. Mandal, S. Chaudhuri, F. Ruddy\",\"doi\":\"10.1051/epjconf/202327801003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactor dosimetry environments require radiation detectors that are capable of operating at high temperatures in extremely high neutron and gamma-ray dose rates. Silicon carbide (SiC) is one of the most promising wide bandgap semiconductors (3.27 eV) for harsh environment applications due to its radiation hardness, high breakdown voltage, high electron saturation velocity, and high thermal conductivity. In this paper, we summarize the prospect of Schottky barrier radiation detectors, fabricated on highly crystalline low-defect detector-grade n-type 4H-SiC epitaxial layers with thickness ranging from 20 to 250 lm, for harsh environment applications. A comprehensive discussion on the characterization of the parameters that influence the energy resolution has been included. The usage of electrical and radiation spectroscopic measurements for characterizing the junction and rectification properties, minority carrier diffusion lengths, and energy resolution has been elaborated. Characterization of crucial factors that limit the energy resolution of the detectors such as charge trap centers using thermally stimulated transient techniques is summarized. Finally, the effect of neutron fluence on the performance of the 4H-SiC detectors is discussed.\",\"PeriodicalId\":11731,\"journal\":{\"name\":\"EPJ Web of Conferences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjconf/202327801003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202327801003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

反应堆剂量测量环境需要能够在高温下以极高的中子和伽马射线剂量率工作的辐射探测器。碳化硅(SiC)具有辐射硬度、高击穿电压、高电子饱和速度和高导热性等优点,是最具应用前景的宽带隙半导体材料之一(3.27 eV)。在本文中,我们总结了肖特基势垒辐射探测器的前景,该探测器是在高结晶低缺陷探测器级n型4H-SiC外延层上制造的,厚度从20到250 lm,用于恶劣环境应用。对影响能量分辨率的参数的表征进行了全面的讨论。利用电和辐射光谱测量来表征结和整流特性,少数载流子扩散长度和能量分辨率已经详细阐述。总结了利用热激瞬态技术表征限制探测器能量分辨率的关键因素,如电荷阱中心。最后讨论了中子通量对4H-SiC探测器性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication and characterization of high-resolution 4H-SiC epitaxial radiation detectors for challenging reactor dosimetry environments
Reactor dosimetry environments require radiation detectors that are capable of operating at high temperatures in extremely high neutron and gamma-ray dose rates. Silicon carbide (SiC) is one of the most promising wide bandgap semiconductors (3.27 eV) for harsh environment applications due to its radiation hardness, high breakdown voltage, high electron saturation velocity, and high thermal conductivity. In this paper, we summarize the prospect of Schottky barrier radiation detectors, fabricated on highly crystalline low-defect detector-grade n-type 4H-SiC epitaxial layers with thickness ranging from 20 to 250 lm, for harsh environment applications. A comprehensive discussion on the characterization of the parameters that influence the energy resolution has been included. The usage of electrical and radiation spectroscopic measurements for characterizing the junction and rectification properties, minority carrier diffusion lengths, and energy resolution has been elaborated. Characterization of crucial factors that limit the energy resolution of the detectors such as charge trap centers using thermally stimulated transient techniques is summarized. Finally, the effect of neutron fluence on the performance of the 4H-SiC detectors is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信