M. Zhalechian, Esmaeil Keyvanshokooh, Cong Shi, M. P. Van Oyen
{"title":"数据驱动的住院控制:一种学习方法","authors":"M. Zhalechian, Esmaeil Keyvanshokooh, Cong Shi, M. P. Van Oyen","doi":"10.1287/opre.2020.0481","DOIUrl":null,"url":null,"abstract":"A Data-Driven Approach to Improve Care Unit Placements in Hospitals The choice of care unit upon hospital admission is a challenging task because of the wide variety of patient characteristics, uncertain needs of patients, and limited number of beds in intensive and intermediate care units. These decisions require carefully weighing the benefits of improved health outcomes against the opportunity cost of reserving higher level care beds for potentially more complex patients arriving in the future. In “Data-Driven Hospital Admission Control: A Learning Approach,” Zhalechian, Keyvanshokooh, Shi, and Van Oyen introduce a data-driven algorithm to address this challenging task. By focusing on reducing the readmission risk of patients, the algorithm is designed to (i) adaptively learn the readmission risk of patients through batch learning with delayed feedback and (ii) determine the best care unit placement for a patient based on the observed information and occupancy levels to minimize total readmission risk. The algorithm is supported by a performance guarantee, and its effectiveness is showcased using real-world hospital system data.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"95 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data-Driven Hospital Admission Control: A Learning Approach\",\"authors\":\"M. Zhalechian, Esmaeil Keyvanshokooh, Cong Shi, M. P. Van Oyen\",\"doi\":\"10.1287/opre.2020.0481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Data-Driven Approach to Improve Care Unit Placements in Hospitals The choice of care unit upon hospital admission is a challenging task because of the wide variety of patient characteristics, uncertain needs of patients, and limited number of beds in intensive and intermediate care units. These decisions require carefully weighing the benefits of improved health outcomes against the opportunity cost of reserving higher level care beds for potentially more complex patients arriving in the future. In “Data-Driven Hospital Admission Control: A Learning Approach,” Zhalechian, Keyvanshokooh, Shi, and Van Oyen introduce a data-driven algorithm to address this challenging task. By focusing on reducing the readmission risk of patients, the algorithm is designed to (i) adaptively learn the readmission risk of patients through batch learning with delayed feedback and (ii) determine the best care unit placement for a patient based on the observed information and occupancy levels to minimize total readmission risk. The algorithm is supported by a performance guarantee, and its effectiveness is showcased using real-world hospital system data.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2020.0481\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2020.0481","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Data-Driven Hospital Admission Control: A Learning Approach
A Data-Driven Approach to Improve Care Unit Placements in Hospitals The choice of care unit upon hospital admission is a challenging task because of the wide variety of patient characteristics, uncertain needs of patients, and limited number of beds in intensive and intermediate care units. These decisions require carefully weighing the benefits of improved health outcomes against the opportunity cost of reserving higher level care beds for potentially more complex patients arriving in the future. In “Data-Driven Hospital Admission Control: A Learning Approach,” Zhalechian, Keyvanshokooh, Shi, and Van Oyen introduce a data-driven algorithm to address this challenging task. By focusing on reducing the readmission risk of patients, the algorithm is designed to (i) adaptively learn the readmission risk of patients through batch learning with delayed feedback and (ii) determine the best care unit placement for a patient based on the observed information and occupancy levels to minimize total readmission risk. The algorithm is supported by a performance guarantee, and its effectiveness is showcased using real-world hospital system data.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.