神经降维的强弱原则

M. Humphries
{"title":"神经降维的强弱原则","authors":"M. Humphries","doi":"10.51628/001c.24619","DOIUrl":null,"url":null,"abstract":"If spikes are the medium, what is the message? Answering that question is driving the development of large-scale, single neuron resolution recordings from behaving animals, on the scale of thousands of neurons. But these data are inherently high-dimensional, with as many dimensions as neurons - so how do we make sense of them? For many the answer is to reduce the number of dimensions. Here I argue we can distinguish weak and strong principles of neural dimension reduction. The weak principle is that dimension reduction is a convenient tool for making sense of complex neural data. The strong principle is that dimension reduction shows us how neural circuits actually operate and compute. Elucidating these principles is crucial, for which we subscribe to provides radically different interpretations of the same neural activity data. I show how we could make either the weak or strong principles appear to be true based on innocuous looking decisions about how we use dimension reduction on our data. To counteract these confounds, I outline the experimental evidence for the strong principle that do not come from dimension reduction; but also show there are a number of neural phenomena that the strong principle fails to address. To reconcile these conflicting data, I suggest that the brain has both principles at play.","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":"343 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Strong and weak principles of neural dimension reduction\",\"authors\":\"M. Humphries\",\"doi\":\"10.51628/001c.24619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If spikes are the medium, what is the message? Answering that question is driving the development of large-scale, single neuron resolution recordings from behaving animals, on the scale of thousands of neurons. But these data are inherently high-dimensional, with as many dimensions as neurons - so how do we make sense of them? For many the answer is to reduce the number of dimensions. Here I argue we can distinguish weak and strong principles of neural dimension reduction. The weak principle is that dimension reduction is a convenient tool for making sense of complex neural data. The strong principle is that dimension reduction shows us how neural circuits actually operate and compute. Elucidating these principles is crucial, for which we subscribe to provides radically different interpretations of the same neural activity data. I show how we could make either the weak or strong principles appear to be true based on innocuous looking decisions about how we use dimension reduction on our data. To counteract these confounds, I outline the experimental evidence for the strong principle that do not come from dimension reduction; but also show there are a number of neural phenomena that the strong principle fails to address. To reconcile these conflicting data, I suggest that the brain has both principles at play.\",\"PeriodicalId\":74289,\"journal\":{\"name\":\"Neurons, behavior, data analysis and theory\",\"volume\":\"343 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurons, behavior, data analysis and theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51628/001c.24619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51628/001c.24619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

如果尖峰是媒介,那么传递的信息是什么?这个问题的答案正在推动大规模、单神经元分辨率记录的发展,这些记录来自数千个神经元的行为动物。但这些数据本质上是高维的,其维度与神经元一样多——那么我们如何理解它们呢?对于许多人来说,答案是减少维数。在这里,我认为我们可以区分神经降维的弱原则和强原则。弱原理是,降维是理解复杂神经数据的方便工具。重要的原理是,降维向我们展示了神经回路实际上是如何运作和计算的。阐明这些原理是至关重要的,因为我们同意对相同的神经活动数据提供完全不同的解释。我展示了我们如何使弱原则或强原则看起来是正确的,基于我们如何在数据上使用降维的无害决定。为了消除这些困惑,我概述了不是来自降维的强原理的实验证据;但也表明有许多神经现象是强原理无法解决的。为了调和这些相互矛盾的数据,我认为大脑有两个原则在起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong and weak principles of neural dimension reduction
If spikes are the medium, what is the message? Answering that question is driving the development of large-scale, single neuron resolution recordings from behaving animals, on the scale of thousands of neurons. But these data are inherently high-dimensional, with as many dimensions as neurons - so how do we make sense of them? For many the answer is to reduce the number of dimensions. Here I argue we can distinguish weak and strong principles of neural dimension reduction. The weak principle is that dimension reduction is a convenient tool for making sense of complex neural data. The strong principle is that dimension reduction shows us how neural circuits actually operate and compute. Elucidating these principles is crucial, for which we subscribe to provides radically different interpretations of the same neural activity data. I show how we could make either the weak or strong principles appear to be true based on innocuous looking decisions about how we use dimension reduction on our data. To counteract these confounds, I outline the experimental evidence for the strong principle that do not come from dimension reduction; but also show there are a number of neural phenomena that the strong principle fails to address. To reconcile these conflicting data, I suggest that the brain has both principles at play.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信