空间K '中一类高阶奇异线性微分方程的经典解和分布解

{"title":"空间K '中一类高阶奇异线性微分方程的经典解和分布解","authors":"","doi":"10.46300/91019.2023.10.1","DOIUrl":null,"url":null,"abstract":"In this research work, we aim to find and describe all the classical solutions of the homogeneous linear singular differential equation of order l in the space of K' distributions. Recall that in our previous research, the results of which have been published in some journals, we had undertaken similar studies in the case of a singular differential equation of the Euler type of second order, when the conditions were carried out. That said, our intentions in this article are therefore to generalize the results obtained and recently published, focusing our research on the situation of the homogeneous singular linear differential equation of order l of Euler type. In this orientation, we base ourselves on the classical theory of ordinary linear differential equations and look for the particular solution to the equation considered in the form of the distribution with a parameter to be determined, which we replace in the latter. Depending on the nature of the roots of the characteristic polynomial of the homogeneous equation we identify, case by case, all the solutions indicated in the sense of distributions in the space K'. In this same work, we return to the non-homogeneous equation of order l of the same Euler type, whose second member consists only of the derivative of order s of the Dirac-delta distribution studied in our previous work, to fully describe all the solutions of the latter in the sense of distributions in the space K'. We finalize this work by making an important remark emphasizing the interest in undertaking research of the same objective of finding a general solution, by studying the singular differential equations of the same higher-order l with the particularity of being of Euler types on the left and Euler on the right in the space of distributions K’.","PeriodicalId":14365,"journal":{"name":"International journal of pure and applied mathematics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Classical and Distributional Solutions of a Higher Order Singular Linear Differential Equation in the Space K’\",\"authors\":\"\",\"doi\":\"10.46300/91019.2023.10.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, we aim to find and describe all the classical solutions of the homogeneous linear singular differential equation of order l in the space of K' distributions. Recall that in our previous research, the results of which have been published in some journals, we had undertaken similar studies in the case of a singular differential equation of the Euler type of second order, when the conditions were carried out. That said, our intentions in this article are therefore to generalize the results obtained and recently published, focusing our research on the situation of the homogeneous singular linear differential equation of order l of Euler type. In this orientation, we base ourselves on the classical theory of ordinary linear differential equations and look for the particular solution to the equation considered in the form of the distribution with a parameter to be determined, which we replace in the latter. Depending on the nature of the roots of the characteristic polynomial of the homogeneous equation we identify, case by case, all the solutions indicated in the sense of distributions in the space K'. In this same work, we return to the non-homogeneous equation of order l of the same Euler type, whose second member consists only of the derivative of order s of the Dirac-delta distribution studied in our previous work, to fully describe all the solutions of the latter in the sense of distributions in the space K'. We finalize this work by making an important remark emphasizing the interest in undertaking research of the same objective of finding a general solution, by studying the singular differential equations of the same higher-order l with the particularity of being of Euler types on the left and Euler on the right in the space of distributions K’.\",\"PeriodicalId\":14365,\"journal\":{\"name\":\"International journal of pure and applied mathematics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of pure and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46300/91019.2023.10.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of pure and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91019.2023.10.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究工作中,我们的目标是在K'分布空间中找到并描述l阶齐次线性奇异微分方程的所有经典解。回想一下,在我们之前的研究中,其结果已在一些期刊上发表,当条件满足时,我们对二阶欧拉型奇异微分方程进行了类似的研究。因此,我们在本文中的意图是推广已经得到的和最近发表的结果,重点研究欧拉型的齐次奇异线性微分方程的情况。在这个方向上,我们以经典的常线性微分方程理论为基础,寻找方程的特解,该方程以带一个待确定参数的分布形式考虑,我们在后者中替换了该参数。根据齐次方程的特征多项式的根的性质,我们逐个确定,在空间K'的分布意义上表示的所有解。在同样的工作中,我们回到相同欧拉型的l阶非齐次方程,它的第二元素仅由我们之前研究过的Dirac-delta分布的s阶导数组成,以充分描述后者在空间K'中的分布意义上的所有解。最后,我们做了一个重要的评论,强调有兴趣通过研究相同高阶l的奇异微分方程,在分布K '的空间中左为欧拉型,右为欧拉型的特殊性,来进行寻找通解的相同目标的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Classical and Distributional Solutions of a Higher Order Singular Linear Differential Equation in the Space K’
In this research work, we aim to find and describe all the classical solutions of the homogeneous linear singular differential equation of order l in the space of K' distributions. Recall that in our previous research, the results of which have been published in some journals, we had undertaken similar studies in the case of a singular differential equation of the Euler type of second order, when the conditions were carried out. That said, our intentions in this article are therefore to generalize the results obtained and recently published, focusing our research on the situation of the homogeneous singular linear differential equation of order l of Euler type. In this orientation, we base ourselves on the classical theory of ordinary linear differential equations and look for the particular solution to the equation considered in the form of the distribution with a parameter to be determined, which we replace in the latter. Depending on the nature of the roots of the characteristic polynomial of the homogeneous equation we identify, case by case, all the solutions indicated in the sense of distributions in the space K'. In this same work, we return to the non-homogeneous equation of order l of the same Euler type, whose second member consists only of the derivative of order s of the Dirac-delta distribution studied in our previous work, to fully describe all the solutions of the latter in the sense of distributions in the space K'. We finalize this work by making an important remark emphasizing the interest in undertaking research of the same objective of finding a general solution, by studying the singular differential equations of the same higher-order l with the particularity of being of Euler types on the left and Euler on the right in the space of distributions K’.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信