{"title":"太阳系探索成果及其对空间资源利用的启示","authors":"H. Miyamoto","doi":"10.4144/rpsj.68.3","DOIUrl":null,"url":null,"abstract":"More than 200 spacecraft have successfully explored about 100 extraterrestrial bodies, including all planets and their major satellites. In-situ observations and return-sample analyses revealed the orbital parameters and compositional distributions of solar system bodies, which are essential to discuss possible utilization of space materials. At an early stage of the future in-situ resource utilization (ISRU), the availability of volatiles, including water on asteroids and putative ice on the Moon, becomes a primary issue, especially for their utilization as propellants. Autonomous trans-portation systems between solar bodies would then be supported by such volatile materials obtained on small bodies. Infrastructures, including bases, could be developed with materials excavated from appropriate bodies and transferred through such a system. Extensive utilization of space resources on Earth may happen but not in the near future.","PeriodicalId":20971,"journal":{"name":"Resources Processing","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results of Solar System Explorations and Their Implications to the Utilization of Space Resources\",\"authors\":\"H. Miyamoto\",\"doi\":\"10.4144/rpsj.68.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More than 200 spacecraft have successfully explored about 100 extraterrestrial bodies, including all planets and their major satellites. In-situ observations and return-sample analyses revealed the orbital parameters and compositional distributions of solar system bodies, which are essential to discuss possible utilization of space materials. At an early stage of the future in-situ resource utilization (ISRU), the availability of volatiles, including water on asteroids and putative ice on the Moon, becomes a primary issue, especially for their utilization as propellants. Autonomous trans-portation systems between solar bodies would then be supported by such volatile materials obtained on small bodies. Infrastructures, including bases, could be developed with materials excavated from appropriate bodies and transferred through such a system. Extensive utilization of space resources on Earth may happen but not in the near future.\",\"PeriodicalId\":20971,\"journal\":{\"name\":\"Resources Processing\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4144/rpsj.68.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4144/rpsj.68.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Results of Solar System Explorations and Their Implications to the Utilization of Space Resources
More than 200 spacecraft have successfully explored about 100 extraterrestrial bodies, including all planets and their major satellites. In-situ observations and return-sample analyses revealed the orbital parameters and compositional distributions of solar system bodies, which are essential to discuss possible utilization of space materials. At an early stage of the future in-situ resource utilization (ISRU), the availability of volatiles, including water on asteroids and putative ice on the Moon, becomes a primary issue, especially for their utilization as propellants. Autonomous trans-portation systems between solar bodies would then be supported by such volatile materials obtained on small bodies. Infrastructures, including bases, could be developed with materials excavated from appropriate bodies and transferred through such a system. Extensive utilization of space resources on Earth may happen but not in the near future.