{"title":"模块分解特性的测试集","authors":"Jan vSaroch, J. Trlifaj","doi":"10.4171/rsmup/66","DOIUrl":null,"url":null,"abstract":"Baer's Criterion of injectivity implies that injectivity of a module is a factorization property w.r.t. a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring $R$ and on additional set-theoretic hypotheses. For $R$ commutative noetherian of Krull dimension $0 |R|$, then the category of all projective modules is accessible.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"148 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Test sets for factorization properties of modules\",\"authors\":\"Jan vSaroch, J. Trlifaj\",\"doi\":\"10.4171/rsmup/66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Baer's Criterion of injectivity implies that injectivity of a module is a factorization property w.r.t. a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring $R$ and on additional set-theoretic hypotheses. For $R$ commutative noetherian of Krull dimension $0 |R|$, then the category of all projective modules is accessible.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Baer's Criterion of injectivity implies that injectivity of a module is a factorization property w.r.t. a single monomorphism. Using the notion of a cotorsion pair, we study generalizations and dualizations of factorization properties in dependence on the algebraic structure of the underlying ring $R$ and on additional set-theoretic hypotheses. For $R$ commutative noetherian of Krull dimension $0 |R|$, then the category of all projective modules is accessible.