自动驾驶汽车环境中潜在碰撞预警的车辆检测

Mario Gluhaković, M. Herceg, M. Popovic, J. Kovacevic
{"title":"自动驾驶汽车环境中潜在碰撞预警的车辆检测","authors":"Mario Gluhaković, M. Herceg, M. Popovic, J. Kovacevic","doi":"10.1109/ZINC50678.2020.9161791","DOIUrl":null,"url":null,"abstract":"In this paper, a method for the vehicles detection in the surroundings of an autonomous vehicle and warnings of potential collision with them is presented. The method, which consists of two parts, is implemented in robot operating system (ROS). The first part is used to detect vehicles in an autonomous vehicle environment, in which, YOLO v2 algorithm, trained on a newly created set of images, is used. The YOLO v2 algorithm is configured to detect four classes of objects: a car, a van, a truck, and a bus. The second part of the proposed method is the ROS node for distance assessment. In particular, two ROS nodes for distance assessment are created; one ROS node used for distance assessment in the Carla simulator, while the other ROS node is used for real-world distance assessment. The testing results of the proposed method show promising results.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"100 1","pages":"178-183"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Vehicle Detection in the Autonomous Vehicle Environment for Potential Collision Warning\",\"authors\":\"Mario Gluhaković, M. Herceg, M. Popovic, J. Kovacevic\",\"doi\":\"10.1109/ZINC50678.2020.9161791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method for the vehicles detection in the surroundings of an autonomous vehicle and warnings of potential collision with them is presented. The method, which consists of two parts, is implemented in robot operating system (ROS). The first part is used to detect vehicles in an autonomous vehicle environment, in which, YOLO v2 algorithm, trained on a newly created set of images, is used. The YOLO v2 algorithm is configured to detect four classes of objects: a car, a van, a truck, and a bus. The second part of the proposed method is the ROS node for distance assessment. In particular, two ROS nodes for distance assessment are created; one ROS node used for distance assessment in the Carla simulator, while the other ROS node is used for real-world distance assessment. The testing results of the proposed method show promising results.\",\"PeriodicalId\":6731,\"journal\":{\"name\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"100 1\",\"pages\":\"178-183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC50678.2020.9161791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种自动驾驶汽车对周围环境中的车辆进行检测并对可能发生碰撞的车辆进行预警的方法。该方法由两部分组成,并在机器人操作系统(ROS)中实现。第一部分用于自动驾驶汽车环境中的车辆检测,其中使用在新创建的图像集上训练的YOLO v2算法。YOLO v2算法被配置为检测四类物体:汽车、面包车、卡车和公共汽车。该方法的第二部分是用于距离评估的ROS节点。特别是,创建了两个用于距离评估的ROS节点;一个ROS节点用于Carla模拟器中的距离评估,而另一个ROS节点用于真实世界的距离评估。测试结果表明,该方法具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Detection in the Autonomous Vehicle Environment for Potential Collision Warning
In this paper, a method for the vehicles detection in the surroundings of an autonomous vehicle and warnings of potential collision with them is presented. The method, which consists of two parts, is implemented in robot operating system (ROS). The first part is used to detect vehicles in an autonomous vehicle environment, in which, YOLO v2 algorithm, trained on a newly created set of images, is used. The YOLO v2 algorithm is configured to detect four classes of objects: a car, a van, a truck, and a bus. The second part of the proposed method is the ROS node for distance assessment. In particular, two ROS nodes for distance assessment are created; one ROS node used for distance assessment in the Carla simulator, while the other ROS node is used for real-world distance assessment. The testing results of the proposed method show promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信