基于单运放正反馈谐振器的CT带通SDMs有限GBW补偿

J. Wagner, Takashi Miki, M. Ortmanns
{"title":"基于单运放正反馈谐振器的CT带通SDMs有限GBW补偿","authors":"J. Wagner, Takashi Miki, M. Ortmanns","doi":"10.1109/MWSCAS47672.2021.9531770","DOIUrl":null,"url":null,"abstract":"In this paper an analysis of the influence of finite GBW in positive-feedback single-OpAmp resonator based CT BPSDMs is presented. The resonators of BPSDMs are often realized by LC tanks, requiring large area for the inductor. Positive-feedback single-OpAmp resonators are trying to solve this drawback, as no inductor is required. However, a large GBW of the OpAmp is necessary to achieve a sufficiently large quality factor. In this work, a system-level model accounting for finite GBW and DC gain for this type of resonator is presented. It allows the full compensation of finite GBW by a newly introduced system-level parameter. By implementing this model in a design environment for BPSDMs, a straightforward and automated design process in the CT domain can be carried out including loopfilter synthesis and STF engineering.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"29 1","pages":"284-287"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compensation of Finite GBW in CT Bandpass SDMs based on Single-OpAmp Resonators with Positive-Feedback\",\"authors\":\"J. Wagner, Takashi Miki, M. Ortmanns\",\"doi\":\"10.1109/MWSCAS47672.2021.9531770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an analysis of the influence of finite GBW in positive-feedback single-OpAmp resonator based CT BPSDMs is presented. The resonators of BPSDMs are often realized by LC tanks, requiring large area for the inductor. Positive-feedback single-OpAmp resonators are trying to solve this drawback, as no inductor is required. However, a large GBW of the OpAmp is necessary to achieve a sufficiently large quality factor. In this work, a system-level model accounting for finite GBW and DC gain for this type of resonator is presented. It allows the full compensation of finite GBW by a newly introduced system-level parameter. By implementing this model in a design environment for BPSDMs, a straightforward and automated design process in the CT domain can be carried out including loopfilter synthesis and STF engineering.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"29 1\",\"pages\":\"284-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了有限GBW对基于正反馈单运放谐振器的CT BPSDMs的影响。bpsdm的谐振器通常由LC槽实现,需要较大的电感面积。正反馈单运放谐振器正试图解决这个缺点,因为不需要电感器。然而,要实现足够大的质量因子,需要大的运放GBW。在这项工作中,提出了一个考虑有限GBW和直流增益的系统级模型。它允许通过一个新引入的系统级参数对有限的GBW进行完全补偿。通过在BPSDMs的设计环境中实现该模型,可以在CT域进行直接和自动化的设计过程,包括环滤波器合成和STF工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compensation of Finite GBW in CT Bandpass SDMs based on Single-OpAmp Resonators with Positive-Feedback
In this paper an analysis of the influence of finite GBW in positive-feedback single-OpAmp resonator based CT BPSDMs is presented. The resonators of BPSDMs are often realized by LC tanks, requiring large area for the inductor. Positive-feedback single-OpAmp resonators are trying to solve this drawback, as no inductor is required. However, a large GBW of the OpAmp is necessary to achieve a sufficiently large quality factor. In this work, a system-level model accounting for finite GBW and DC gain for this type of resonator is presented. It allows the full compensation of finite GBW by a newly introduced system-level parameter. By implementing this model in a design environment for BPSDMs, a straightforward and automated design process in the CT domain can be carried out including loopfilter synthesis and STF engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信