秩约束半定规划的迭代特征解

Rajat Sanyal, A. V. Singh, K. Chaudhury
{"title":"秩约束半定规划的迭代特征解","authors":"Rajat Sanyal, A. V. Singh, K. Chaudhury","doi":"10.1109/NCC.2019.8732206","DOIUrl":null,"url":null,"abstract":"Rank-constrained semidefinite programming (SDP) arises naturally in various applications such as max-cut, angular (phase) synchronization, and rigid registration. Based on the alternating direction method of multipliers, we develop an iterative solver for this nonconvex form of SDP, where the dominant cost per iteration is the partial eigendecomposition of a symmetric matrix. We prove that if the iterates converge, then they do so to a KKT point of the SDP. In the context of rigid registration, we perform several numerical experiments to study the convergence behavior of the solver and its registration accuracy. As an application, we use the solver for wireless sensor network localization from range measurements. The resulting algorithm is shown to be competitive with existing optimization methods for sensor localization in terms of speed and accuracy.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"154 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Iterative Eigensolver for Rank-Constrained Semidefinite Programming\",\"authors\":\"Rajat Sanyal, A. V. Singh, K. Chaudhury\",\"doi\":\"10.1109/NCC.2019.8732206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rank-constrained semidefinite programming (SDP) arises naturally in various applications such as max-cut, angular (phase) synchronization, and rigid registration. Based on the alternating direction method of multipliers, we develop an iterative solver for this nonconvex form of SDP, where the dominant cost per iteration is the partial eigendecomposition of a symmetric matrix. We prove that if the iterates converge, then they do so to a KKT point of the SDP. In the context of rigid registration, we perform several numerical experiments to study the convergence behavior of the solver and its registration accuracy. As an application, we use the solver for wireless sensor network localization from range measurements. The resulting algorithm is shown to be competitive with existing optimization methods for sensor localization in terms of speed and accuracy.\",\"PeriodicalId\":6870,\"journal\":{\"name\":\"2019 National Conference on Communications (NCC)\",\"volume\":\"154 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2019.8732206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

秩约束半定规划(SDP)自然出现在各种应用中,如最大切割、角(相位)同步和刚性配准。基于乘法器的交替方向法,我们开发了这种非凸形式SDP的迭代求解器,其中每次迭代的主要代价是对称矩阵的部分特征分解。我们证明了如果迭代收敛,那么它们收敛到SDP的一个KKT点。在刚性配准的背景下,我们进行了几个数值实验来研究求解器的收敛性和配准精度。作为一个应用,我们将求解器用于无线传感器网络的测距定位。结果表明,该算法在速度和精度方面与现有的传感器定位优化方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Iterative Eigensolver for Rank-Constrained Semidefinite Programming
Rank-constrained semidefinite programming (SDP) arises naturally in various applications such as max-cut, angular (phase) synchronization, and rigid registration. Based on the alternating direction method of multipliers, we develop an iterative solver for this nonconvex form of SDP, where the dominant cost per iteration is the partial eigendecomposition of a symmetric matrix. We prove that if the iterates converge, then they do so to a KKT point of the SDP. In the context of rigid registration, we perform several numerical experiments to study the convergence behavior of the solver and its registration accuracy. As an application, we use the solver for wireless sensor network localization from range measurements. The resulting algorithm is shown to be competitive with existing optimization methods for sensor localization in terms of speed and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信