Zhizhen Zhong, M. Ghobadi, Alaa Khaddaj, J. Leach, Yiting Xia, Ying Zhang
{"title":"箭头","authors":"Zhizhen Zhong, M. Ghobadi, Alaa Khaddaj, J. Leach, Yiting Xia, Ying Zhang","doi":"10.1145/1963405.1963435","DOIUrl":null,"url":null,"abstract":"A drive-by download attack occurs when a user visits a webpage which attempts to automatically download malware without the user's consent. Attackers sometimes use a malware distribution network (MDN) to manage a large number of malicious webpages, exploits, and malware executables. In this paper, we provide a new method to determine these MDNs from the secondary URLs and redirect chains recorded by a high-interaction client honeypot. In addition, we propose a novel drive-by download detection method. Instead of depending on the malicious content used by previous methods, our algorithm first identifies and then leverages the URLs of the MDN's central servers, where a central server is a common server shared by a large percentage of the drive-by download attacks in the same MDN. A set of regular expression-based signatures are then generated based on the URLs of each central server. This method allows additional malicious webpages to be identified which launched but failed to execute a successful drive-by download attack. The new drive-by detection system named ARROW has been implemented, and we provide a large-scale evaluation on the output of a production drive-by detection system. The experimental results demonstrate the effectiveness of our method, where the detection coverage has been boosted by 96% with an extremely low false positive rate.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"ARROW\",\"authors\":\"Zhizhen Zhong, M. Ghobadi, Alaa Khaddaj, J. Leach, Yiting Xia, Ying Zhang\",\"doi\":\"10.1145/1963405.1963435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A drive-by download attack occurs when a user visits a webpage which attempts to automatically download malware without the user's consent. Attackers sometimes use a malware distribution network (MDN) to manage a large number of malicious webpages, exploits, and malware executables. In this paper, we provide a new method to determine these MDNs from the secondary URLs and redirect chains recorded by a high-interaction client honeypot. In addition, we propose a novel drive-by download detection method. Instead of depending on the malicious content used by previous methods, our algorithm first identifies and then leverages the URLs of the MDN's central servers, where a central server is a common server shared by a large percentage of the drive-by download attacks in the same MDN. A set of regular expression-based signatures are then generated based on the URLs of each central server. This method allows additional malicious webpages to be identified which launched but failed to execute a successful drive-by download attack. The new drive-by detection system named ARROW has been implemented, and we provide a large-scale evaluation on the output of a production drive-by detection system. The experimental results demonstrate the effectiveness of our method, where the detection coverage has been boosted by 96% with an extremely low false positive rate.\",\"PeriodicalId\":20487,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1963405.1963435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1963405.1963435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A drive-by download attack occurs when a user visits a webpage which attempts to automatically download malware without the user's consent. Attackers sometimes use a malware distribution network (MDN) to manage a large number of malicious webpages, exploits, and malware executables. In this paper, we provide a new method to determine these MDNs from the secondary URLs and redirect chains recorded by a high-interaction client honeypot. In addition, we propose a novel drive-by download detection method. Instead of depending on the malicious content used by previous methods, our algorithm first identifies and then leverages the URLs of the MDN's central servers, where a central server is a common server shared by a large percentage of the drive-by download attacks in the same MDN. A set of regular expression-based signatures are then generated based on the URLs of each central server. This method allows additional malicious webpages to be identified which launched but failed to execute a successful drive-by download attack. The new drive-by detection system named ARROW has been implemented, and we provide a large-scale evaluation on the output of a production drive-by detection system. The experimental results demonstrate the effectiveness of our method, where the detection coverage has been boosted by 96% with an extremely low false positive rate.