踢顶和半经典自旋链的量子算子生长界

Chao Yin, A. Lucas
{"title":"踢顶和半经典自旋链的量子算子生长界","authors":"Chao Yin, A. Lucas","doi":"10.1103/PhysRevA.103.042414","DOIUrl":null,"url":null,"abstract":"We present a framework for understanding the dynamics of operator size, and bounding the growth of out-of-time-ordered correlators, in models of large-$S$ spins. Focusing on the dynamics of a single spin, we show the finiteness of the Lyapunov exponent in the large-$S$ limit; our bounds are tighter than the best known Lieb-Robinson-type bounds on these systems. We numerically find our upper bound on Lyapunov exponents is within an order of magnitude of numerically computed values in classical and quantum kicked top models. Generalizing our results to coupled large-$S$ spins on lattices, we show that the butterfly velocity, which characterizes the spatial speed of quantum information scrambling, is finite as $S\\rightarrow\\infty$. We emphasize qualitative differences between operator growth in semiclassical large-spin models, and quantum holographic systems including the Sachdev-Ye-Kitaev model.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Quantum operator growth bounds for kicked tops and semiclassical spin chains\",\"authors\":\"Chao Yin, A. Lucas\",\"doi\":\"10.1103/PhysRevA.103.042414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a framework for understanding the dynamics of operator size, and bounding the growth of out-of-time-ordered correlators, in models of large-$S$ spins. Focusing on the dynamics of a single spin, we show the finiteness of the Lyapunov exponent in the large-$S$ limit; our bounds are tighter than the best known Lieb-Robinson-type bounds on these systems. We numerically find our upper bound on Lyapunov exponents is within an order of magnitude of numerically computed values in classical and quantum kicked top models. Generalizing our results to coupled large-$S$ spins on lattices, we show that the butterfly velocity, which characterizes the spatial speed of quantum information scrambling, is finite as $S\\\\rightarrow\\\\infty$. We emphasize qualitative differences between operator growth in semiclassical large-spin models, and quantum holographic systems including the Sachdev-Ye-Kitaev model.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevA.103.042414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.103.042414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了一个框架来理解算子大小的动力学,并在大- $S$自旋模型中限制非时序相关器的增长。关注于单自旋的动力学,我们证明了Lyapunov指数在大$S$极限下的有限性;我们的界比这些系统上最著名的利布-罗宾逊型界更紧。我们在数值上发现我们的李雅普诺夫指数的上界在经典和量子踢顶模型中数值计算值的一个数量级之内。将我们的结果推广到晶格上耦合的$S$大自旋,我们证明了表征量子信息置乱空间速度的蝴蝶速度是有限的$S\rightarrow\infty$。我们强调了半经典大自旋模型和包括Sachdev-Ye-Kitaev模型在内的量子全息系统中算子增长的质的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum operator growth bounds for kicked tops and semiclassical spin chains
We present a framework for understanding the dynamics of operator size, and bounding the growth of out-of-time-ordered correlators, in models of large-$S$ spins. Focusing on the dynamics of a single spin, we show the finiteness of the Lyapunov exponent in the large-$S$ limit; our bounds are tighter than the best known Lieb-Robinson-type bounds on these systems. We numerically find our upper bound on Lyapunov exponents is within an order of magnitude of numerically computed values in classical and quantum kicked top models. Generalizing our results to coupled large-$S$ spins on lattices, we show that the butterfly velocity, which characterizes the spatial speed of quantum information scrambling, is finite as $S\rightarrow\infty$. We emphasize qualitative differences between operator growth in semiclassical large-spin models, and quantum holographic systems including the Sachdev-Ye-Kitaev model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信