寻找高级行为缺失的技能

Adam Pacheck, Salar Moarref, H. Kress-Gazit
{"title":"寻找高级行为缺失的技能","authors":"Adam Pacheck, Salar Moarref, H. Kress-Gazit","doi":"10.1109/ICRA40945.2020.9197223","DOIUrl":null,"url":null,"abstract":"Recently, Linear Temporal Logic (LTL) has been used as a formalism for defining high-level robot tasks, and LTL synthesis has been used to automatically create correct-by-construction robot control. The underlying premise of this approach is that the robot has a set of actions, or skills, that can be composed to achieve the high- level task. In this paper we consider LTL specifications that cannot be synthesized into robot control due to lack of appropriate skills; we present algorithms for automatically suggesting new or modified skills for the robot that will guarantee the task will be achieved. We demonstrate our approach with a physical Baxter robot and a simulated KUKA IIWA arm.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"26 1","pages":"10335-10341"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Finding Missing Skills for High-Level Behaviors\",\"authors\":\"Adam Pacheck, Salar Moarref, H. Kress-Gazit\",\"doi\":\"10.1109/ICRA40945.2020.9197223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Linear Temporal Logic (LTL) has been used as a formalism for defining high-level robot tasks, and LTL synthesis has been used to automatically create correct-by-construction robot control. The underlying premise of this approach is that the robot has a set of actions, or skills, that can be composed to achieve the high- level task. In this paper we consider LTL specifications that cannot be synthesized into robot control due to lack of appropriate skills; we present algorithms for automatically suggesting new or modified skills for the robot that will guarantee the task will be achieved. We demonstrate our approach with a physical Baxter robot and a simulated KUKA IIWA arm.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"26 1\",\"pages\":\"10335-10341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,线性时间逻辑(LTL)已被用作定义高级机器人任务的形式化方法,LTL综合已被用于自动创建按结构正确的机器人控制。这种方法的基本前提是机器人具有一组动作或技能,可以组合起来完成高级任务。在本文中,我们考虑了由于缺乏适当的技能而无法综合到机器人控制中的LTL规范;我们提出算法,自动建议新的或修改的技能,机器人将保证任务的完成。我们用一个物理的Baxter机器人和一个模拟的KUKA IIWA手臂来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Missing Skills for High-Level Behaviors
Recently, Linear Temporal Logic (LTL) has been used as a formalism for defining high-level robot tasks, and LTL synthesis has been used to automatically create correct-by-construction robot control. The underlying premise of this approach is that the robot has a set of actions, or skills, that can be composed to achieve the high- level task. In this paper we consider LTL specifications that cannot be synthesized into robot control due to lack of appropriate skills; we present algorithms for automatically suggesting new or modified skills for the robot that will guarantee the task will be achieved. We demonstrate our approach with a physical Baxter robot and a simulated KUKA IIWA arm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信