{"title":"预防接种对传染病的控制作用","authors":"J. Baafi, Darko Io, Asenso Fw","doi":"10.4172/21689679.1000357","DOIUrl":null,"url":null,"abstract":"This project develops the SIR model of infectious diseases and uses it to study vaccination as a control strategy used to eradicate them. Vaccination combats the disease by offering immunity against future infection. Analytic expressions are obtained for key parameters such as the minimum vaccination level required. Numerical simulations are used to illustrate the main results.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vaccination as a Control of Infectious Diseases\",\"authors\":\"J. Baafi, Darko Io, Asenso Fw\",\"doi\":\"10.4172/21689679.1000357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project develops the SIR model of infectious diseases and uses it to study vaccination as a control strategy used to eradicate them. Vaccination combats the disease by offering immunity against future infection. Analytic expressions are obtained for key parameters such as the minimum vaccination level required. Numerical simulations are used to illustrate the main results.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/21689679.1000357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/21689679.1000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This project develops the SIR model of infectious diseases and uses it to study vaccination as a control strategy used to eradicate them. Vaccination combats the disease by offering immunity against future infection. Analytic expressions are obtained for key parameters such as the minimum vaccination level required. Numerical simulations are used to illustrate the main results.