关于三对角矩阵、切比雪夫多项式和斐波那契数之间的联系

Pub Date : 2020-11-01 DOI:10.2478/ausm-2020-0019
C. D. da Fonseca
{"title":"关于三对角矩阵、切比雪夫多项式和斐波那契数之间的联系","authors":"C. D. da Fonseca","doi":"10.2478/ausm-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we recall several connections between the determinant of some tridiagonal matrices and the orthogonal polynomials allowing the relation between Chebyshev polynomials of second kind and Fibonacci numbers. With basic transformations, we are able to recover some recent results on this matter, bringing them into one place.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the connection between tridiagonal matrices, Chebyshev polynomials, and Fibonacci numbers\",\"authors\":\"C. D. da Fonseca\",\"doi\":\"10.2478/ausm-2020-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we recall several connections between the determinant of some tridiagonal matrices and the orthogonal polynomials allowing the relation between Chebyshev polynomials of second kind and Fibonacci numbers. With basic transformations, we are able to recover some recent results on this matter, bringing them into one place.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们回顾了一些三对角矩阵的行列式与正交多项式之间的几个联系,从而使第二类切比雪夫多项式与斐波那契数之间的关系成为可能。通过基本的转换,我们能够恢复关于这个问题的一些最近的结果,将它们集中到一个地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the connection between tridiagonal matrices, Chebyshev polynomials, and Fibonacci numbers
Abstract In this note, we recall several connections between the determinant of some tridiagonal matrices and the orthogonal polynomials allowing the relation between Chebyshev polynomials of second kind and Fibonacci numbers. With basic transformations, we are able to recover some recent results on this matter, bringing them into one place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信