具有相同主特征空间的图的walk和CDC

IF 0.5 4区 数学 Q3 MATHEMATICS
Irene Sciriha, Luke Collins
{"title":"具有相同主特征空间的图的walk和CDC","authors":"Irene Sciriha, Luke Collins","doi":"10.7151/dmgt.2386","DOIUrl":null,"url":null,"abstract":"The main eigenvalues of a graph G are those eigenvalues of the (0, 1)adjacency matrix A with a corresponding eigenspace not orthogonal to j = (1 | 1 | · · · | 1). The principal main eigenvector associated with a main eigenvalue is the orthogonal projection of the corresponding eigenspace onto j. The main eigenspace of a graph is generated by all the principal main eigenvectors and is the same as the image of the walk matrix. We explore a new concept to see to what extent the main eigenspace determines the entries of the walk matrix of a graph. The CDC of a graph G is the direct product G ×K2. We establish a hierarchy of inclusions connecting classes of graphs in view of their CDC, walk matrix, main eigenvalues and main eigenspaces. We provide a new proof that graphs with the same CDC are characterized as TF-isomorphic graphs. A complete list of TF-isomorphic graphs on at most 8 vertices and their common CDC is also given.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"22 1","pages":"507-532"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The walks and CDC of graphs with the same main eigenspace\",\"authors\":\"Irene Sciriha, Luke Collins\",\"doi\":\"10.7151/dmgt.2386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main eigenvalues of a graph G are those eigenvalues of the (0, 1)adjacency matrix A with a corresponding eigenspace not orthogonal to j = (1 | 1 | · · · | 1). The principal main eigenvector associated with a main eigenvalue is the orthogonal projection of the corresponding eigenspace onto j. The main eigenspace of a graph is generated by all the principal main eigenvectors and is the same as the image of the walk matrix. We explore a new concept to see to what extent the main eigenspace determines the entries of the walk matrix of a graph. The CDC of a graph G is the direct product G ×K2. We establish a hierarchy of inclusions connecting classes of graphs in view of their CDC, walk matrix, main eigenvalues and main eigenspaces. We provide a new proof that graphs with the same CDC are characterized as TF-isomorphic graphs. A complete list of TF-isomorphic graphs on at most 8 vertices and their common CDC is also given.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"22 1\",\"pages\":\"507-532\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2386\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2386","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

图G的主特征值是(0,1)邻接矩阵a与对应特征空间不正交于j =(1 | 1 |···| 1)的特征值。与主特征值相关联的主特征向量是对应特征空间在j上的正交投影。图G的主特征空间是由所有主特征向量生成的,与行走矩阵的图像相同。我们探索了一个新的概念,看看主特征空间在多大程度上决定了一个图的行走矩阵的条目。图G的CDC是直积G ×K2。根据图的CDC、行走矩阵、主特征值和主特征空间,建立了图类间包含的层次结构。给出了具有相同CDC的图被表征为tf同构图的一个新的证明。给出了不超过8个顶点的tf同构图的完整列表及其共同的CDC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The walks and CDC of graphs with the same main eigenspace
The main eigenvalues of a graph G are those eigenvalues of the (0, 1)adjacency matrix A with a corresponding eigenspace not orthogonal to j = (1 | 1 | · · · | 1). The principal main eigenvector associated with a main eigenvalue is the orthogonal projection of the corresponding eigenspace onto j. The main eigenspace of a graph is generated by all the principal main eigenvectors and is the same as the image of the walk matrix. We explore a new concept to see to what extent the main eigenspace determines the entries of the walk matrix of a graph. The CDC of a graph G is the direct product G ×K2. We establish a hierarchy of inclusions connecting classes of graphs in view of their CDC, walk matrix, main eigenvalues and main eigenspaces. We provide a new proof that graphs with the same CDC are characterized as TF-isomorphic graphs. A complete list of TF-isomorphic graphs on at most 8 vertices and their common CDC is also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信