生成对抗网络在不完全数据分类中的多重输入

Bao Ngoc Vi, Dinh Tan Nguyen, Cao Truong Tran, Huu Phuc Ngo, Chi Cong Nguyen, Hai-Hong Phan
{"title":"生成对抗网络在不完全数据分类中的多重输入","authors":"Bao Ngoc Vi, Dinh Tan Nguyen, Cao Truong Tran, Huu Phuc Ngo, Chi Cong Nguyen, Hai-Hong Phan","doi":"10.1109/RIVF51545.2021.9642138","DOIUrl":null,"url":null,"abstract":"Missing values present as the most common problem in real-world data science. Inadequate treatment of missing values could often result in mass errors. Hence missing values should be managed conscientiously for classification. Generative Adversarial Networks (GANs) have been applied for imputing missing values in most recent years. This paper proposes a multiple imputation method to estimate missing values for classification through the integration of GAN and ensemble learning. Our propose method MIGAN utilises GAN to generate different training observations which are then used to conduct ensemble classifiers for classification with missing data. We conducted our experiments examine MIGAN on various data sets as well as comparing MIGAN with the state-of-the-art imputation methods. The experimental results show significant results, which highlights the accuracy of MIGAN in classifying the missing data.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data\",\"authors\":\"Bao Ngoc Vi, Dinh Tan Nguyen, Cao Truong Tran, Huu Phuc Ngo, Chi Cong Nguyen, Hai-Hong Phan\",\"doi\":\"10.1109/RIVF51545.2021.9642138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing values present as the most common problem in real-world data science. Inadequate treatment of missing values could often result in mass errors. Hence missing values should be managed conscientiously for classification. Generative Adversarial Networks (GANs) have been applied for imputing missing values in most recent years. This paper proposes a multiple imputation method to estimate missing values for classification through the integration of GAN and ensemble learning. Our propose method MIGAN utilises GAN to generate different training observations which are then used to conduct ensemble classifiers for classification with missing data. We conducted our experiments examine MIGAN on various data sets as well as comparing MIGAN with the state-of-the-art imputation methods. The experimental results show significant results, which highlights the accuracy of MIGAN in classifying the missing data.\",\"PeriodicalId\":6860,\"journal\":{\"name\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"volume\":\"15 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF51545.2021.9642138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

缺失值是现实世界数据科学中最常见的问题。对缺失值处理不当往往会导致大量误差。因此,缺失值应认真管理分类。近年来,生成对抗网络(GANs)被广泛应用于缺失值的估算。本文提出了一种将GAN和集成学习相结合的多重输入方法来估计分类中的缺失值。我们提出的方法MIGAN利用GAN生成不同的训练观测值,然后使用这些观测值进行集成分类器对缺失数据进行分类。我们在各种数据集上进行了实验,并将MIGAN与最先进的估算方法进行了比较。实验结果显示了显著的结果,表明了MIGAN对缺失数据分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data
Missing values present as the most common problem in real-world data science. Inadequate treatment of missing values could often result in mass errors. Hence missing values should be managed conscientiously for classification. Generative Adversarial Networks (GANs) have been applied for imputing missing values in most recent years. This paper proposes a multiple imputation method to estimate missing values for classification through the integration of GAN and ensemble learning. Our propose method MIGAN utilises GAN to generate different training observations which are then used to conduct ensemble classifiers for classification with missing data. We conducted our experiments examine MIGAN on various data sets as well as comparing MIGAN with the state-of-the-art imputation methods. The experimental results show significant results, which highlights the accuracy of MIGAN in classifying the missing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信