{"title":"从蛤壳和废弃铅酸电池回收的废酸中生产石膏","authors":"H. D. Gohoho, J. R. Dankwah","doi":"10.4314/gm.v19i1.8","DOIUrl":null,"url":null,"abstract":"Gypsum exists in the Dihydrate (CaSO4 2H2O), Hemihydrate (CaSO4. ½H2O) and the Anhydrite (CaSO4) forms. The exploitation of the natural rock form deposit of gypsum is on the increase, necessitating the need to find alternative and efficient sources of gypsum so as to sustain all the industries dependent on gypsum as raw material. This work investigates the production of gypsum from clamshells and waste sulphuric acid from end-of-life car batteries. Clamshells obtained from the Volta Region of Ghana were calcined at a temperature of about 1000 ˚C with a view of producing CaO which was pulverised to particle size of 96 % passing 106 μm. Samples of the Pulverised Clam Shells (PCS) were then reacted with five different concentrations of the Waste Battery Acid (WBA). The reaction was observed to be very exothermic; a temperature of 101 ˚C was obtained for the 6.5 M concentration of WBA. The resulting mixture was filtered and an XRD analysis was performed on the oven dried residue to ascertain its composition. The findings from the work revealed that 100 g of pulverised clam shells produced an average of 58.08 g of calcined product and 134 g of gypsum. Peaks of SiO2 and CaCO3 in the XRD diffractogram of the gypsum indicated that the reaction between PCS and WBA was incomplete. Conclusively, the results from the XRD analysis showed peaks of the three forms of gypsum that was successfully produced. Keywords: Net Present Value; Internal Rate of Return; Sensitivity Analysis; Risk Analysis","PeriodicalId":12530,"journal":{"name":"Ghana Mining Journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Gypsum from Clamshells and Waste Acid Recovered from End-of-Life Lead Acid Batteries\",\"authors\":\"H. D. Gohoho, J. R. Dankwah\",\"doi\":\"10.4314/gm.v19i1.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gypsum exists in the Dihydrate (CaSO4 2H2O), Hemihydrate (CaSO4. ½H2O) and the Anhydrite (CaSO4) forms. The exploitation of the natural rock form deposit of gypsum is on the increase, necessitating the need to find alternative and efficient sources of gypsum so as to sustain all the industries dependent on gypsum as raw material. This work investigates the production of gypsum from clamshells and waste sulphuric acid from end-of-life car batteries. Clamshells obtained from the Volta Region of Ghana were calcined at a temperature of about 1000 ˚C with a view of producing CaO which was pulverised to particle size of 96 % passing 106 μm. Samples of the Pulverised Clam Shells (PCS) were then reacted with five different concentrations of the Waste Battery Acid (WBA). The reaction was observed to be very exothermic; a temperature of 101 ˚C was obtained for the 6.5 M concentration of WBA. The resulting mixture was filtered and an XRD analysis was performed on the oven dried residue to ascertain its composition. The findings from the work revealed that 100 g of pulverised clam shells produced an average of 58.08 g of calcined product and 134 g of gypsum. Peaks of SiO2 and CaCO3 in the XRD diffractogram of the gypsum indicated that the reaction between PCS and WBA was incomplete. Conclusively, the results from the XRD analysis showed peaks of the three forms of gypsum that was successfully produced. Keywords: Net Present Value; Internal Rate of Return; Sensitivity Analysis; Risk Analysis\",\"PeriodicalId\":12530,\"journal\":{\"name\":\"Ghana Mining Journal\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ghana Mining Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/gm.v19i1.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ghana Mining Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/gm.v19i1.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
石膏存在于二水合(caso42h2o)、半水合(CaSO4)。1 / 2h2o)和硬石膏(CaSO4)形成。对天然岩石石膏矿床的开采正在增加,因此需要寻找替代和有效的石膏来源,以维持所有依赖石膏作为原料的工业。这项工作研究了从蛤壳中生产石膏和从报废的汽车电池中生产废硫酸。将产自加纳Volta地区的蛤壳在1000℃左右的温度下进行煅烧,制备出粒径达96% - 106 μm的CaO。然后将粉碎的蛤蜊壳(PCS)样品与五种不同浓度的废电池酸(WBA)反应。观察到该反应是非常放热的;6.5 M WBA的温度为101℃。对所得混合物进行过滤,并对烘箱干渣进行XRD分析,确定其成分。研究结果显示,100克粉碎的蛤蜊壳平均产生58.08克的煅烧产物和134克的石膏。石膏的XRD衍射图中SiO2和CaCO3峰表明PCS与WBA反应不完全。最后,XRD分析结果显示了成功制备的三种形态石膏的峰。关键词:净现值;内部收益率;敏感性分析;风险分析
Production of Gypsum from Clamshells and Waste Acid Recovered from End-of-Life Lead Acid Batteries
Gypsum exists in the Dihydrate (CaSO4 2H2O), Hemihydrate (CaSO4. ½H2O) and the Anhydrite (CaSO4) forms. The exploitation of the natural rock form deposit of gypsum is on the increase, necessitating the need to find alternative and efficient sources of gypsum so as to sustain all the industries dependent on gypsum as raw material. This work investigates the production of gypsum from clamshells and waste sulphuric acid from end-of-life car batteries. Clamshells obtained from the Volta Region of Ghana were calcined at a temperature of about 1000 ˚C with a view of producing CaO which was pulverised to particle size of 96 % passing 106 μm. Samples of the Pulverised Clam Shells (PCS) were then reacted with five different concentrations of the Waste Battery Acid (WBA). The reaction was observed to be very exothermic; a temperature of 101 ˚C was obtained for the 6.5 M concentration of WBA. The resulting mixture was filtered and an XRD analysis was performed on the oven dried residue to ascertain its composition. The findings from the work revealed that 100 g of pulverised clam shells produced an average of 58.08 g of calcined product and 134 g of gypsum. Peaks of SiO2 and CaCO3 in the XRD diffractogram of the gypsum indicated that the reaction between PCS and WBA was incomplete. Conclusively, the results from the XRD analysis showed peaks of the three forms of gypsum that was successfully produced. Keywords: Net Present Value; Internal Rate of Return; Sensitivity Analysis; Risk Analysis