1,3,4-恶二唑与各种杂环化合物复合的生物学潜力和合成多样性

R. K, Deevan Paul Amarnath, Hariraj Narayanan, Adhya Das
{"title":"1,3,4-恶二唑与各种杂环化合物复合的生物学潜力和合成多样性","authors":"R. K, Deevan Paul Amarnath, Hariraj Narayanan, Adhya Das","doi":"10.18596/jotcsa.1202640","DOIUrl":null,"url":null,"abstract":"Countless bioactive compounds are having the oxadiazole nucleus showing clinical and biological applications. Oxadiazole is a heterocyclic compound of the azole family that has gained increasing attention due to its wide therapeutic potential. Many significant synthetic medicinal compounds have the oxadiazole scaffold, which provided a good treatment idea and binds with high affinity to a variety of receptors to aid in the development of novel beneficial derivatives. Numerous researchers have worked to create novel oxadiazole compounds and evaluate them for how they affect inflammation, tumor, epilepsy, microbial infections, and analgesic properties. The present review article summarizes some of the oxadiazole derivatives synthesized and their biological activities and can be a useful guide for researchers working on this scaffold.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Biological Potential and Synthetic Diversity of 1,3,4-Oxadiazole Multiplexed with Various Heterocyclic Compounds\",\"authors\":\"R. K, Deevan Paul Amarnath, Hariraj Narayanan, Adhya Das\",\"doi\":\"10.18596/jotcsa.1202640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Countless bioactive compounds are having the oxadiazole nucleus showing clinical and biological applications. Oxadiazole is a heterocyclic compound of the azole family that has gained increasing attention due to its wide therapeutic potential. Many significant synthetic medicinal compounds have the oxadiazole scaffold, which provided a good treatment idea and binds with high affinity to a variety of receptors to aid in the development of novel beneficial derivatives. Numerous researchers have worked to create novel oxadiazole compounds and evaluate them for how they affect inflammation, tumor, epilepsy, microbial infections, and analgesic properties. The present review article summarizes some of the oxadiazole derivatives synthesized and their biological activities and can be a useful guide for researchers working on this scaffold.\",\"PeriodicalId\":17299,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.1202640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1202640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无数具有恶二唑核的生物活性化合物显示出临床和生物学上的应用。恶二唑是一种杂环化合物,由于其广泛的治疗潜力而受到越来越多的关注。许多重要的合成药物化合物都含有恶二唑支架,它提供了一个很好的治疗思路,并且与多种受体具有高亲和力结合,有助于开发新的有益衍生物。许多研究人员致力于创造新的恶二唑化合物,并评估它们如何影响炎症、肿瘤、癫痫、微生物感染和镇痛特性。本文综述了一些恶二唑类衍生物的合成及其生物活性,以期对该支架的研究有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Biological Potential and Synthetic Diversity of 1,3,4-Oxadiazole Multiplexed with Various Heterocyclic Compounds
Countless bioactive compounds are having the oxadiazole nucleus showing clinical and biological applications. Oxadiazole is a heterocyclic compound of the azole family that has gained increasing attention due to its wide therapeutic potential. Many significant synthetic medicinal compounds have the oxadiazole scaffold, which provided a good treatment idea and binds with high affinity to a variety of receptors to aid in the development of novel beneficial derivatives. Numerous researchers have worked to create novel oxadiazole compounds and evaluate them for how they affect inflammation, tumor, epilepsy, microbial infections, and analgesic properties. The present review article summarizes some of the oxadiazole derivatives synthesized and their biological activities and can be a useful guide for researchers working on this scaffold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信