城市空间无人机自主避碰研究*

Ruixuan Wei, Qirui Zhang, Zhuofan Xu, Kai Zhou, Xiaolin Zhao
{"title":"城市空间无人机自主避碰研究*","authors":"Ruixuan Wei, Qirui Zhang, Zhuofan Xu, Kai Zhou, Xiaolin Zhao","doi":"10.1109/GNCC42960.2018.9019059","DOIUrl":null,"url":null,"abstract":"Small UAVs are seeking wide usage in urban space for its advantageous performance. However, there are crowded with static and dynamic buildings, causing serious challenges for UAVs’ safety. This paper proposes a novel autonomous collision avoidance method based on time-obstacle dynamic map. First, the state estimation and trajectory prediction are performed based on extended Kalman filtering. Second, the time-obstacle dynamic map is constructed via introducing time axis. Third, the flyable paths are searched on the basis of breadth first approach and then the optimal path can be obtained through A-Star algorithm. Finally, the simulation results have shown that the proposed collision avoidance method can avoid immobile building and moving obstacles, and making a safe path for UAVs in urban space","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"22 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UAVs’ autonomous collision avoidance in urban space*\",\"authors\":\"Ruixuan Wei, Qirui Zhang, Zhuofan Xu, Kai Zhou, Xiaolin Zhao\",\"doi\":\"10.1109/GNCC42960.2018.9019059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small UAVs are seeking wide usage in urban space for its advantageous performance. However, there are crowded with static and dynamic buildings, causing serious challenges for UAVs’ safety. This paper proposes a novel autonomous collision avoidance method based on time-obstacle dynamic map. First, the state estimation and trajectory prediction are performed based on extended Kalman filtering. Second, the time-obstacle dynamic map is constructed via introducing time axis. Third, the flyable paths are searched on the basis of breadth first approach and then the optimal path can be obtained through A-Star algorithm. Finally, the simulation results have shown that the proposed collision avoidance method can avoid immobile building and moving obstacles, and making a safe path for UAVs in urban space\",\"PeriodicalId\":6623,\"journal\":{\"name\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"volume\":\"22 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GNCC42960.2018.9019059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GNCC42960.2018.9019059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

小型无人机以其优越的性能在城市空间中得到广泛应用。然而,静态和动态建筑拥挤,给无人机的安全性带来了严峻的挑战。提出了一种基于时间-障碍动态映射的自动避碰方法。首先,基于扩展卡尔曼滤波进行状态估计和轨迹预测;其次,通过引入时间轴构造时间-障碍动态图;第三,基于广度优先法搜索可飞路径,通过A-Star算法得到最优路径;最后,仿真结果表明,所提出的避碰方法可以避开不移动的建筑物和移动的障碍物,为无人机在城市空间中提供安全的路径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAVs’ autonomous collision avoidance in urban space*
Small UAVs are seeking wide usage in urban space for its advantageous performance. However, there are crowded with static and dynamic buildings, causing serious challenges for UAVs’ safety. This paper proposes a novel autonomous collision avoidance method based on time-obstacle dynamic map. First, the state estimation and trajectory prediction are performed based on extended Kalman filtering. Second, the time-obstacle dynamic map is constructed via introducing time axis. Third, the flyable paths are searched on the basis of breadth first approach and then the optimal path can be obtained through A-Star algorithm. Finally, the simulation results have shown that the proposed collision avoidance method can avoid immobile building and moving obstacles, and making a safe path for UAVs in urban space
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信