$q$-任意信道的极性码,$q=2^{r}$

Woomyoung Park, A. Barg
{"title":"$q$-任意信道的极性码,$q=2^{r}$","authors":"Woomyoung Park, A. Barg","doi":"10.1109/TIT.2012.2219035","DOIUrl":null,"url":null,"abstract":"We study polarization for nonbinary channels with input alphabet of size q=2r, r=2,3,.... Using Arikan's polarizing kernel H2, we prove that the virtual channels that arise in the process of channel evolution converge to q-ary channels with capacity 0,1,2,..., r bits. As a result of this analysis, we show that polar codes support reliable transmission over discrete memoryless channels with q-ary input for all rates below the symmetric capacity of the channel. This leads to an explicit transmission scheme for q-ary channels. The block error probability of decoding using successive cancellation behaves as exp(-Nα), where N is the code length and α is any constant less than 0.5.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"16 1","pages":"955-969"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Polar Codes for $q$-Ary Channels, $q=2^{r}$\",\"authors\":\"Woomyoung Park, A. Barg\",\"doi\":\"10.1109/TIT.2012.2219035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study polarization for nonbinary channels with input alphabet of size q=2r, r=2,3,.... Using Arikan's polarizing kernel H2, we prove that the virtual channels that arise in the process of channel evolution converge to q-ary channels with capacity 0,1,2,..., r bits. As a result of this analysis, we show that polar codes support reliable transmission over discrete memoryless channels with q-ary input for all rates below the symmetric capacity of the channel. This leads to an explicit transmission scheme for q-ary channels. The block error probability of decoding using successive cancellation behaves as exp(-Nα), where N is the code length and α is any constant less than 0.5.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"16 1\",\"pages\":\"955-969\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2012.2219035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2012.2219035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们研究了输入字母大小为q=2r, r=2,3,....的非二元信道的极化问题利用Arikan的极化核H2,证明了在信道演化过程中产生的虚拟信道收敛于容量为0、1、2、…的q元信道。, r位。作为这个分析的结果,我们表明极性码支持可靠的传输在离散无存储器信道与q-ary输入所有速率低于信道的对称容量。这导致了q元信道的显式传输方案。使用连续取消解码的块错误概率表现为exp(-Nα),其中N是码长,α是小于0.5的任何常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polar Codes for $q$-Ary Channels, $q=2^{r}$
We study polarization for nonbinary channels with input alphabet of size q=2r, r=2,3,.... Using Arikan's polarizing kernel H2, we prove that the virtual channels that arise in the process of channel evolution converge to q-ary channels with capacity 0,1,2,..., r bits. As a result of this analysis, we show that polar codes support reliable transmission over discrete memoryless channels with q-ary input for all rates below the symmetric capacity of the channel. This leads to an explicit transmission scheme for q-ary channels. The block error probability of decoding using successive cancellation behaves as exp(-Nα), where N is the code length and α is any constant less than 0.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信