{"title":"基于优化方法的Zn-Cd液态合金粘度和表面张力温度依赖性研究","authors":"H. K. Limbu, G. Adhikari","doi":"10.12691/ijp-8-3-1","DOIUrl":null,"url":null,"abstract":"We have computed interchange energy by estimating the best fit experimental and theoretical values at 800K using Flory’s model. Taking these values at 800K, interchange energy at different temperatures are calculated using optimization method and with the help of which free energy of mixing, heat of mixing and entropy of mixing are obtained. The partial excess free energy is calculated with the help of values of free energy of mixing which is used to find surface tension. Butler’s equation and Layered structure approach have been used to calculate surface tension of Zn-Cd alloy. Viscosity is obtained from Singh and Sommer’s formulation, Moelwyn-Hughes equation, and Kaptay equation.","PeriodicalId":22540,"journal":{"name":"The International Journal of Physics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Temperature Dependence of Viscosity and Surface Tension in Zn-Cd Liquid Alloy Using Optimization Method\",\"authors\":\"H. K. Limbu, G. Adhikari\",\"doi\":\"10.12691/ijp-8-3-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have computed interchange energy by estimating the best fit experimental and theoretical values at 800K using Flory’s model. Taking these values at 800K, interchange energy at different temperatures are calculated using optimization method and with the help of which free energy of mixing, heat of mixing and entropy of mixing are obtained. The partial excess free energy is calculated with the help of values of free energy of mixing which is used to find surface tension. Butler’s equation and Layered structure approach have been used to calculate surface tension of Zn-Cd alloy. Viscosity is obtained from Singh and Sommer’s formulation, Moelwyn-Hughes equation, and Kaptay equation.\",\"PeriodicalId\":22540,\"journal\":{\"name\":\"The International Journal of Physics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/ijp-8-3-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/ijp-8-3-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature Dependence of Viscosity and Surface Tension in Zn-Cd Liquid Alloy Using Optimization Method
We have computed interchange energy by estimating the best fit experimental and theoretical values at 800K using Flory’s model. Taking these values at 800K, interchange energy at different temperatures are calculated using optimization method and with the help of which free energy of mixing, heat of mixing and entropy of mixing are obtained. The partial excess free energy is calculated with the help of values of free energy of mixing which is used to find surface tension. Butler’s equation and Layered structure approach have been used to calculate surface tension of Zn-Cd alloy. Viscosity is obtained from Singh and Sommer’s formulation, Moelwyn-Hughes equation, and Kaptay equation.