{"title":"利用轨迹数据识别潜在追尾碰撞的经验方法","authors":"Narayana Raju, S. Arkatkar, S. Easa, G. Joshi","doi":"10.1080/19439962.2021.1919261","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a novel approach for examining rear-end collisions between successive vehicles in a traffic stream. In this approach, a new safety measure of the follower driver's attentiveness is proposed, referred to herein as instantaneous heeding time (IHT), reflecting the subject follower's heeding nature concerning its leader. A safety framework that integrates the IHT with the distance gap and the instantaneous follower's speed is presented. The applicability of the framework is demonstrated using an Indian-traffic trajectory database (developed in this study) and the homogeneous traffic database of the next generation simulation (NGSIM) project developed in the United States (U.S.). Five study sections in India and two study sections in the U.S. are analyzed for three traffic-flow levels. For Indian traffic, the results show that motorized two-wheelers (MTW) have degraded road safety due to the unrestrained lateral crisscross movements. Due to the presence of MTW, the Indian-traffic stream operates in a disorderly fashion, thereby increasing the probability of rear-end collisions with other vehicle classes. Further, the importance of implementing cautioning measures for drivers that reduce the probability of collisions is demonstrated. Besides, the NGSIM application results confirmed the proposed framework's applicability to both Indian and homogeneous traffic conditions. In practice, the proposed framework can be used in real-time to monitor the driver's aggressive instincts.","PeriodicalId":46672,"journal":{"name":"Journal of Transportation Safety & Security","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Empirical approach for identifying potential rear-end collisions using trajectory data\",\"authors\":\"Narayana Raju, S. Arkatkar, S. Easa, G. Joshi\",\"doi\":\"10.1080/19439962.2021.1919261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper proposes a novel approach for examining rear-end collisions between successive vehicles in a traffic stream. In this approach, a new safety measure of the follower driver's attentiveness is proposed, referred to herein as instantaneous heeding time (IHT), reflecting the subject follower's heeding nature concerning its leader. A safety framework that integrates the IHT with the distance gap and the instantaneous follower's speed is presented. The applicability of the framework is demonstrated using an Indian-traffic trajectory database (developed in this study) and the homogeneous traffic database of the next generation simulation (NGSIM) project developed in the United States (U.S.). Five study sections in India and two study sections in the U.S. are analyzed for three traffic-flow levels. For Indian traffic, the results show that motorized two-wheelers (MTW) have degraded road safety due to the unrestrained lateral crisscross movements. Due to the presence of MTW, the Indian-traffic stream operates in a disorderly fashion, thereby increasing the probability of rear-end collisions with other vehicle classes. Further, the importance of implementing cautioning measures for drivers that reduce the probability of collisions is demonstrated. Besides, the NGSIM application results confirmed the proposed framework's applicability to both Indian and homogeneous traffic conditions. In practice, the proposed framework can be used in real-time to monitor the driver's aggressive instincts.\",\"PeriodicalId\":46672,\"journal\":{\"name\":\"Journal of Transportation Safety & Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transportation Safety & Security\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/19439962.2021.1919261\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Safety & Security","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19439962.2021.1919261","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Empirical approach for identifying potential rear-end collisions using trajectory data
Abstract This paper proposes a novel approach for examining rear-end collisions between successive vehicles in a traffic stream. In this approach, a new safety measure of the follower driver's attentiveness is proposed, referred to herein as instantaneous heeding time (IHT), reflecting the subject follower's heeding nature concerning its leader. A safety framework that integrates the IHT with the distance gap and the instantaneous follower's speed is presented. The applicability of the framework is demonstrated using an Indian-traffic trajectory database (developed in this study) and the homogeneous traffic database of the next generation simulation (NGSIM) project developed in the United States (U.S.). Five study sections in India and two study sections in the U.S. are analyzed for three traffic-flow levels. For Indian traffic, the results show that motorized two-wheelers (MTW) have degraded road safety due to the unrestrained lateral crisscross movements. Due to the presence of MTW, the Indian-traffic stream operates in a disorderly fashion, thereby increasing the probability of rear-end collisions with other vehicle classes. Further, the importance of implementing cautioning measures for drivers that reduce the probability of collisions is demonstrated. Besides, the NGSIM application results confirmed the proposed framework's applicability to both Indian and homogeneous traffic conditions. In practice, the proposed framework can be used in real-time to monitor the driver's aggressive instincts.