广义追基去量化的相干恢复保证

G. Pope, Christoph Studer, M. Baes
{"title":"广义追基去量化的相干恢复保证","authors":"G. Pope, Christoph Studer, M. Baes","doi":"10.1109/ICASSP.2012.6288712","DOIUrl":null,"url":null,"abstract":"This paper deals with the recovery of signals that admit an approximately sparse representation in some known dictionary (possibly over-complete) and are corrupted by additive noise. In particular, we consider additive measurement noise with bounded ℓ<sub>p</sub>-norm for p ≥ 2, and we minimize the ℓ<sub>q</sub> quasi-norm (with q ∈ (0, 1]) of the signal vector. We develop coherence-based recovery guarantees for which stable recovery via generalized basis-pursuit de-quantizing (BPDQ<sub>p,q</sub>) is possible. We finally show that depending on the measurement-noise model and the choice of the ℓ<sub>p</sub>-norm used in the constraint, (BPDQ<sub>p,q</sub>) significantly outperforms classical basis pursuit de-noising (BPDN).","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Coherence-based recovery guarantees for generalized basis-pursuit de-quantizing\",\"authors\":\"G. Pope, Christoph Studer, M. Baes\",\"doi\":\"10.1109/ICASSP.2012.6288712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the recovery of signals that admit an approximately sparse representation in some known dictionary (possibly over-complete) and are corrupted by additive noise. In particular, we consider additive measurement noise with bounded ℓ<sub>p</sub>-norm for p ≥ 2, and we minimize the ℓ<sub>q</sub> quasi-norm (with q ∈ (0, 1]) of the signal vector. We develop coherence-based recovery guarantees for which stable recovery via generalized basis-pursuit de-quantizing (BPDQ<sub>p,q</sub>) is possible. We finally show that depending on the measurement-noise model and the choice of the ℓ<sub>p</sub>-norm used in the constraint, (BPDQ<sub>p,q</sub>) significantly outperforms classical basis pursuit de-noising (BPDN).\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了在某些已知字典(可能是过完备的)中承认近似稀疏表示并被加性噪声破坏的信号的恢复问题。特别地,当p≥2时,我们考虑具有有界的p-范数的加性测量噪声,并最小化信号向量的q准范数(其中q∈(0,1]))。我们开发了基于相干的恢复保证,其中通过广义基追求去量化(BPDQp,q)可以实现稳定的恢复。我们最后表明,根据测量噪声模型和约束中使用的p-范数的选择,(BPDQp,q)显着优于经典的基追踪去噪(BPDN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherence-based recovery guarantees for generalized basis-pursuit de-quantizing
This paper deals with the recovery of signals that admit an approximately sparse representation in some known dictionary (possibly over-complete) and are corrupted by additive noise. In particular, we consider additive measurement noise with bounded ℓp-norm for p ≥ 2, and we minimize the ℓq quasi-norm (with q ∈ (0, 1]) of the signal vector. We develop coherence-based recovery guarantees for which stable recovery via generalized basis-pursuit de-quantizing (BPDQp,q) is possible. We finally show that depending on the measurement-noise model and the choice of the ℓp-norm used in the constraint, (BPDQp,q) significantly outperforms classical basis pursuit de-noising (BPDN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信