{"title":"广义追基去量化的相干恢复保证","authors":"G. Pope, Christoph Studer, M. Baes","doi":"10.1109/ICASSP.2012.6288712","DOIUrl":null,"url":null,"abstract":"This paper deals with the recovery of signals that admit an approximately sparse representation in some known dictionary (possibly over-complete) and are corrupted by additive noise. In particular, we consider additive measurement noise with bounded ℓ<sub>p</sub>-norm for p ≥ 2, and we minimize the ℓ<sub>q</sub> quasi-norm (with q ∈ (0, 1]) of the signal vector. We develop coherence-based recovery guarantees for which stable recovery via generalized basis-pursuit de-quantizing (BPDQ<sub>p,q</sub>) is possible. We finally show that depending on the measurement-noise model and the choice of the ℓ<sub>p</sub>-norm used in the constraint, (BPDQ<sub>p,q</sub>) significantly outperforms classical basis pursuit de-noising (BPDN).","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Coherence-based recovery guarantees for generalized basis-pursuit de-quantizing\",\"authors\":\"G. Pope, Christoph Studer, M. Baes\",\"doi\":\"10.1109/ICASSP.2012.6288712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the recovery of signals that admit an approximately sparse representation in some known dictionary (possibly over-complete) and are corrupted by additive noise. In particular, we consider additive measurement noise with bounded ℓ<sub>p</sub>-norm for p ≥ 2, and we minimize the ℓ<sub>q</sub> quasi-norm (with q ∈ (0, 1]) of the signal vector. We develop coherence-based recovery guarantees for which stable recovery via generalized basis-pursuit de-quantizing (BPDQ<sub>p,q</sub>) is possible. We finally show that depending on the measurement-noise model and the choice of the ℓ<sub>p</sub>-norm used in the constraint, (BPDQ<sub>p,q</sub>) significantly outperforms classical basis pursuit de-noising (BPDN).\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coherence-based recovery guarantees for generalized basis-pursuit de-quantizing
This paper deals with the recovery of signals that admit an approximately sparse representation in some known dictionary (possibly over-complete) and are corrupted by additive noise. In particular, we consider additive measurement noise with bounded ℓp-norm for p ≥ 2, and we minimize the ℓq quasi-norm (with q ∈ (0, 1]) of the signal vector. We develop coherence-based recovery guarantees for which stable recovery via generalized basis-pursuit de-quantizing (BPDQp,q) is possible. We finally show that depending on the measurement-noise model and the choice of the ℓp-norm used in the constraint, (BPDQp,q) significantly outperforms classical basis pursuit de-noising (BPDN).