ECSS经验:粒子追踪的重新发明

C. Rosales, R. McLay
{"title":"ECSS经验:粒子追踪的重新发明","authors":"C. Rosales, R. McLay","doi":"10.1145/2616498.2616527","DOIUrl":null,"url":null,"abstract":"This work describes an implementation of distributed particle tracking that provides a factor 10000x speedup over traditional schemes. While none of the techniques used to achieve this result are completely new, they have been used in combination to great effect in this project. The implementation includes parallel IO using HDF5, a flexible load balancing scheme, and dynamic buffering to achieve excellent performance at scale. The use of HDF5 decouples the size of the simulation generating the data from the particle tracing, providing a more flexible and efficient workflow. The load balancing scheme ensures that heterogeneous particle distributions do not result in a waste of computational resources by maintaining all the MPI tasks occupied at any given time. Dynamic buffering minimizes MPI exchanges across MPI tasks, a critical element in the performance improvements achieved.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"22 1","pages":"13:1-13:2"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ECSS Experience: Particle Tracing Reinvented\",\"authors\":\"C. Rosales, R. McLay\",\"doi\":\"10.1145/2616498.2616527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes an implementation of distributed particle tracking that provides a factor 10000x speedup over traditional schemes. While none of the techniques used to achieve this result are completely new, they have been used in combination to great effect in this project. The implementation includes parallel IO using HDF5, a flexible load balancing scheme, and dynamic buffering to achieve excellent performance at scale. The use of HDF5 decouples the size of the simulation generating the data from the particle tracing, providing a more flexible and efficient workflow. The load balancing scheme ensures that heterogeneous particle distributions do not result in a waste of computational resources by maintaining all the MPI tasks occupied at any given time. Dynamic buffering minimizes MPI exchanges across MPI tasks, a critical element in the performance improvements achieved.\",\"PeriodicalId\":93364,\"journal\":{\"name\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"volume\":\"22 1\",\"pages\":\"13:1-13:2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2616498.2616527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2616498.2616527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作描述了一种分布式粒子跟踪的实现,它比传统方案提供了10000x的加速。虽然用于实现这一结果的技术都不是全新的,但在这个项目中,它们已经被结合使用,产生了很大的效果。该实现包括使用HDF5的并行IO、灵活的负载平衡方案和动态缓冲,以实现大规模的卓越性能。HDF5的使用分离了从粒子跟踪生成数据的模拟的大小,提供了一个更灵活和高效的工作流程。负载平衡方案通过保持在任何给定时间占用的所有MPI任务,确保异构粒子分布不会导致计算资源的浪费。动态缓冲最大限度地减少了MPI任务之间的MPI交换,这是实现性能改进的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECSS Experience: Particle Tracing Reinvented
This work describes an implementation of distributed particle tracking that provides a factor 10000x speedup over traditional schemes. While none of the techniques used to achieve this result are completely new, they have been used in combination to great effect in this project. The implementation includes parallel IO using HDF5, a flexible load balancing scheme, and dynamic buffering to achieve excellent performance at scale. The use of HDF5 decouples the size of the simulation generating the data from the particle tracing, providing a more flexible and efficient workflow. The load balancing scheme ensures that heterogeneous particle distributions do not result in a waste of computational resources by maintaining all the MPI tasks occupied at any given time. Dynamic buffering minimizes MPI exchanges across MPI tasks, a critical element in the performance improvements achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信