J. Lee, Sanghoon Lee, Young-chae Kim, Sumin Kim, S. Hong
{"title":"增强虚拟现实和360度空间可视化,支持用户参与设计","authors":"J. Lee, Sanghoon Lee, Young-chae Kim, Sumin Kim, S. Hong","doi":"10.1093/jcde/qwad035","DOIUrl":null,"url":null,"abstract":"\n This paper discusses an approach to augmented virtual reality (AVR) and 360-degree spatial visualization. The approach involves locating stereoscopic 3D virtual objects into a real off-site panorama, supporting spatial remodel design decision-making through realistic comparisons. Previous studies have shown that in the design process, end-user engagement promotes the quality and satisfaction of design solutions. Immersive media such as virtual reality (VR) and augmented reality (AR) have increasingly been used as communication tools for user engagement in design, as they provide intuitive and realistic user experiences, particularly in comparing design plans. However, the dichotomous affordance of current VR and AR devices is limited in satisfying both the sense of realism and immersion that are essential for user engagement. To overcome this shortcoming, we propose an AVR-based design visualization approach that integrates the advantages of both media technologies to provide a high sense of realism and immersion off-site, responding to location and environmental stimuli, such as lighting, material, and other factors. To achieve this goal, we used 360-degree panorama data of the target space as a design visualization background, with content immersion experienced through VR hardware. Additionally, we developed software to demonstrate the actual use of the AVR-based approach, and various visualization-purposed file formats can be exported automatically using this software. The software supports the authoring of 360-degree spatial visualization videos for realistic design comparisons, which can be easily accessed by end-users using a head-mounted display or smartphone, even in real-time. We performed a demonstration of this approach using an actual remodel design project for the university library lobby, and this paper shows the usability and applicability of the AVR-based approach for user engagement.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"18 1","pages":"1047-1059"},"PeriodicalIF":4.8000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Augmented virtual reality and 360 spatial visualization for supporting user-engaged design\",\"authors\":\"J. Lee, Sanghoon Lee, Young-chae Kim, Sumin Kim, S. Hong\",\"doi\":\"10.1093/jcde/qwad035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper discusses an approach to augmented virtual reality (AVR) and 360-degree spatial visualization. The approach involves locating stereoscopic 3D virtual objects into a real off-site panorama, supporting spatial remodel design decision-making through realistic comparisons. Previous studies have shown that in the design process, end-user engagement promotes the quality and satisfaction of design solutions. Immersive media such as virtual reality (VR) and augmented reality (AR) have increasingly been used as communication tools for user engagement in design, as they provide intuitive and realistic user experiences, particularly in comparing design plans. However, the dichotomous affordance of current VR and AR devices is limited in satisfying both the sense of realism and immersion that are essential for user engagement. To overcome this shortcoming, we propose an AVR-based design visualization approach that integrates the advantages of both media technologies to provide a high sense of realism and immersion off-site, responding to location and environmental stimuli, such as lighting, material, and other factors. To achieve this goal, we used 360-degree panorama data of the target space as a design visualization background, with content immersion experienced through VR hardware. Additionally, we developed software to demonstrate the actual use of the AVR-based approach, and various visualization-purposed file formats can be exported automatically using this software. The software supports the authoring of 360-degree spatial visualization videos for realistic design comparisons, which can be easily accessed by end-users using a head-mounted display or smartphone, even in real-time. We performed a demonstration of this approach using an actual remodel design project for the university library lobby, and this paper shows the usability and applicability of the AVR-based approach for user engagement.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":\"18 1\",\"pages\":\"1047-1059\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad035\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad035","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Augmented virtual reality and 360 spatial visualization for supporting user-engaged design
This paper discusses an approach to augmented virtual reality (AVR) and 360-degree spatial visualization. The approach involves locating stereoscopic 3D virtual objects into a real off-site panorama, supporting spatial remodel design decision-making through realistic comparisons. Previous studies have shown that in the design process, end-user engagement promotes the quality and satisfaction of design solutions. Immersive media such as virtual reality (VR) and augmented reality (AR) have increasingly been used as communication tools for user engagement in design, as they provide intuitive and realistic user experiences, particularly in comparing design plans. However, the dichotomous affordance of current VR and AR devices is limited in satisfying both the sense of realism and immersion that are essential for user engagement. To overcome this shortcoming, we propose an AVR-based design visualization approach that integrates the advantages of both media technologies to provide a high sense of realism and immersion off-site, responding to location and environmental stimuli, such as lighting, material, and other factors. To achieve this goal, we used 360-degree panorama data of the target space as a design visualization background, with content immersion experienced through VR hardware. Additionally, we developed software to demonstrate the actual use of the AVR-based approach, and various visualization-purposed file formats can be exported automatically using this software. The software supports the authoring of 360-degree spatial visualization videos for realistic design comparisons, which can be easily accessed by end-users using a head-mounted display or smartphone, even in real-time. We performed a demonstration of this approach using an actual remodel design project for the university library lobby, and this paper shows the usability and applicability of the AVR-based approach for user engagement.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.