{"title":"一种简单的确定性分布式低直径聚类","authors":"Václav Rozhoň, Bernhard Haeupler, C. Grunau","doi":"10.48550/arXiv.2210.11784","DOIUrl":null,"url":null,"abstract":"We give a simple, local process for nodes in an undirected graph to form non-adjacent clusters that (1) have at most a polylogarithmic diameter and (2) contain at least half of all vertices. Efficient deterministic distributed clustering algorithms for computing strong-diameter network decompositions and other key tools follow immediately. Overall, our process is a direct and drastically simplified way for computing these fundamental objects.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"74 1","pages":"166-174"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Deterministic Distributed Low-Diameter Clustering\",\"authors\":\"Václav Rozhoň, Bernhard Haeupler, C. Grunau\",\"doi\":\"10.48550/arXiv.2210.11784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a simple, local process for nodes in an undirected graph to form non-adjacent clusters that (1) have at most a polylogarithmic diameter and (2) contain at least half of all vertices. Efficient deterministic distributed clustering algorithms for computing strong-diameter network decompositions and other key tools follow immediately. Overall, our process is a direct and drastically simplified way for computing these fundamental objects.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"74 1\",\"pages\":\"166-174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.11784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.11784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simple Deterministic Distributed Low-Diameter Clustering
We give a simple, local process for nodes in an undirected graph to form non-adjacent clusters that (1) have at most a polylogarithmic diameter and (2) contain at least half of all vertices. Efficient deterministic distributed clustering algorithms for computing strong-diameter network decompositions and other key tools follow immediately. Overall, our process is a direct and drastically simplified way for computing these fundamental objects.