NLP2API:使用众包知识和超大数据分析的代码搜索查询重构

M. M. Rahman, C. Roy
{"title":"NLP2API:使用众包知识和超大数据分析的代码搜索查询重构","authors":"M. M. Rahman, C. Roy","doi":"10.1109/ICSME.2018.00086","DOIUrl":null,"url":null,"abstract":"Software developers frequently issue generic natural language (NL) queries for code search. Unfortunately, such queries often do not lead to any relevant results with contemporary code (or web) search engines due to vocabulary mismatch problems. In our technical research paper (accepted at ICSME 2018), we propose a technique–NLP2API–that reformulates such NL queries using crowdsourced knowledge and extra-large data analytics derived from Stack Overflow Q & A site. In this paper, we discuss all the artifacts produced by our work, and provide necessary details for downloading and verifying them.","PeriodicalId":6572,"journal":{"name":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"121 1","pages":"714-714"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"NLP2API: Query Reformulation for Code Search Using Crowdsourced Knowledge and Extra-Large Data Analytics\",\"authors\":\"M. M. Rahman, C. Roy\",\"doi\":\"10.1109/ICSME.2018.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software developers frequently issue generic natural language (NL) queries for code search. Unfortunately, such queries often do not lead to any relevant results with contemporary code (or web) search engines due to vocabulary mismatch problems. In our technical research paper (accepted at ICSME 2018), we propose a technique–NLP2API–that reformulates such NL queries using crowdsourced knowledge and extra-large data analytics derived from Stack Overflow Q & A site. In this paper, we discuss all the artifacts produced by our work, and provide necessary details for downloading and verifying them.\",\"PeriodicalId\":6572,\"journal\":{\"name\":\"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"121 1\",\"pages\":\"714-714\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSME.2018.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME.2018.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

软件开发人员经常为代码搜索发出通用自然语言(NL)查询。不幸的是,由于词汇不匹配的问题,这样的查询通常无法在当代代码(或web)搜索引擎中得到任何相关的结果。在我们的技术研究论文(在ICSME 2018上被接受)中,我们提出了一种技术- nlp2api -该技术使用来自Stack Overflow问答网站的众包知识和超大数据分析来重新制定这种自然语言查询。在本文中,我们讨论了由我们的工作产生的所有工件,并提供了下载和验证它们的必要细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NLP2API: Query Reformulation for Code Search Using Crowdsourced Knowledge and Extra-Large Data Analytics
Software developers frequently issue generic natural language (NL) queries for code search. Unfortunately, such queries often do not lead to any relevant results with contemporary code (or web) search engines due to vocabulary mismatch problems. In our technical research paper (accepted at ICSME 2018), we propose a technique–NLP2API–that reformulates such NL queries using crowdsourced knowledge and extra-large data analytics derived from Stack Overflow Q & A site. In this paper, we discuss all the artifacts produced by our work, and provide necessary details for downloading and verifying them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信