基于卡尔曼滤波的双质量系统频域在线辨识

IF 0.9 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
N. Nevaranta, S. Derammelaere, J. Parkkinen, B. Vervisch, T. Lindh, M. Niemela, O. Pyrhönen
{"title":"基于卡尔曼滤波的双质量系统频域在线辨识","authors":"N. Nevaranta, S. Derammelaere, J. Parkkinen, B. Vervisch, T. Lindh, M. Niemela, O. Pyrhönen","doi":"10.4173/MIC.2016.2.5","DOIUrl":null,"url":null,"abstract":"Some of the most widely recognized online parameter estimation techniques used in different servomechanism are the extended Kalman filter (EKF) and recursive least squares (RLS) methods. Without loss of generality, these methods are based on a prior knowledge of the model structure of the system to be identified, and thus, they can be regarded as parametric identification methods. This paper proposes an on-line non-parametric frequency response identification routine that is based on a fixed-coefficient Kalman filter, which is configured to perform like a Fourier transform. The approach exploits the knowledge of the excitation signal by updating the Kalman filter gains with the known time-varying frequency of chirp signal. The experimental results demonstrate the effectiveness of the proposed online identification method to estimate a non-parametric model of the closed loop controlled servomechanism in a selected band of frequencies.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"21 1","pages":"133-147"},"PeriodicalIF":0.9000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Online Identification of a Two-Mass System in Frequency Domain using a Kalman Filter\",\"authors\":\"N. Nevaranta, S. Derammelaere, J. Parkkinen, B. Vervisch, T. Lindh, M. Niemela, O. Pyrhönen\",\"doi\":\"10.4173/MIC.2016.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some of the most widely recognized online parameter estimation techniques used in different servomechanism are the extended Kalman filter (EKF) and recursive least squares (RLS) methods. Without loss of generality, these methods are based on a prior knowledge of the model structure of the system to be identified, and thus, they can be regarded as parametric identification methods. This paper proposes an on-line non-parametric frequency response identification routine that is based on a fixed-coefficient Kalman filter, which is configured to perform like a Fourier transform. The approach exploits the knowledge of the excitation signal by updating the Kalman filter gains with the known time-varying frequency of chirp signal. The experimental results demonstrate the effectiveness of the proposed online identification method to estimate a non-parametric model of the closed loop controlled servomechanism in a selected band of frequencies.\",\"PeriodicalId\":49801,\"journal\":{\"name\":\"Modeling Identification and Control\",\"volume\":\"21 1\",\"pages\":\"133-147\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling Identification and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4173/MIC.2016.2.5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4173/MIC.2016.2.5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 8

摘要

扩展卡尔曼滤波(EKF)和递推最小二乘(RLS)方法是应用于不同伺服机构的最广泛认可的在线参数估计技术。这些方法都是基于对待识别系统模型结构的先验知识,在不失通用性的前提下,可以看作是参数识别方法。本文提出了一种基于固定系数卡尔曼滤波器的在线非参数频响识别方法,该方法被配置成类似傅里叶变换的形式。该方法利用对激励信号的了解,利用已知的啁啾信号时变频率更新卡尔曼滤波器增益。实验结果表明,所提出的在线辨识方法能够有效地估计出闭环控制伺服机构在选定频率范围内的非参数模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Identification of a Two-Mass System in Frequency Domain using a Kalman Filter
Some of the most widely recognized online parameter estimation techniques used in different servomechanism are the extended Kalman filter (EKF) and recursive least squares (RLS) methods. Without loss of generality, these methods are based on a prior knowledge of the model structure of the system to be identified, and thus, they can be regarded as parametric identification methods. This paper proposes an on-line non-parametric frequency response identification routine that is based on a fixed-coefficient Kalman filter, which is configured to perform like a Fourier transform. The approach exploits the knowledge of the excitation signal by updating the Kalman filter gains with the known time-varying frequency of chirp signal. The experimental results demonstrate the effectiveness of the proposed online identification method to estimate a non-parametric model of the closed loop controlled servomechanism in a selected band of frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modeling Identification and Control
Modeling Identification and Control 工程技术-计算机:控制论
CiteScore
3.30
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信