深度学习在农业遥感图像分类中的应用

L. Hashemi-Beni, A. Gebrehiwot
{"title":"深度学习在农业遥感图像分类中的应用","authors":"L. Hashemi-Beni, A. Gebrehiwot","doi":"10.5194/isprs-archives-xliv-m-2-2020-51-2020","DOIUrl":null,"url":null,"abstract":"Abstract. This research examines the ability of deep learning methods for remote sensing image classification for agriculture applications. U-net and convolutional neural networks are fine-tuned, utilized and tested for crop/weed classification. The dataset for this study includes 60 top-down images of an organic carrots field, which was collected by an autonomous vehicle and labeled by experts. FCN-8s model achieved 75.1% accuracy on detecting weeds compared to 66.72% of U-net using 60 training images. However, the U-net model performed better on detecting crops which is 60.48% compared to 47.86% of FCN-8s.","PeriodicalId":14757,"journal":{"name":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"15 1","pages":"51-54"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"DEEP LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION FOR AGRICULTURE APPLICATIONS\",\"authors\":\"L. Hashemi-Beni, A. Gebrehiwot\",\"doi\":\"10.5194/isprs-archives-xliv-m-2-2020-51-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This research examines the ability of deep learning methods for remote sensing image classification for agriculture applications. U-net and convolutional neural networks are fine-tuned, utilized and tested for crop/weed classification. The dataset for this study includes 60 top-down images of an organic carrots field, which was collected by an autonomous vehicle and labeled by experts. FCN-8s model achieved 75.1% accuracy on detecting weeds compared to 66.72% of U-net using 60 training images. However, the U-net model performed better on detecting crops which is 60.48% compared to 47.86% of FCN-8s.\",\"PeriodicalId\":14757,\"journal\":{\"name\":\"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"15 1\",\"pages\":\"51-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xliv-m-2-2020-51-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xliv-m-2-2020-51-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

摘要本研究考察了深度学习方法在农业遥感图像分类中的应用能力。U-net和卷积神经网络被微调、应用和测试用于作物/杂草分类。本研究的数据集包括60张有机胡萝卜田的自上而下的图像,这些图像由自动驾驶汽车收集并由专家标记。FCN-8s模型对60张训练图像的杂草检测准确率为75.1%,而U-net模型的准确率为66.72%。而U-net模型对作物的识别率为60.48%,优于fcn -8模型的47.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEEP LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION FOR AGRICULTURE APPLICATIONS
Abstract. This research examines the ability of deep learning methods for remote sensing image classification for agriculture applications. U-net and convolutional neural networks are fine-tuned, utilized and tested for crop/weed classification. The dataset for this study includes 60 top-down images of an organic carrots field, which was collected by an autonomous vehicle and labeled by experts. FCN-8s model achieved 75.1% accuracy on detecting weeds compared to 66.72% of U-net using 60 training images. However, the U-net model performed better on detecting crops which is 60.48% compared to 47.86% of FCN-8s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信