风险周期值

V. Khokhlov
{"title":"风险周期值","authors":"V. Khokhlov","doi":"10.2139/ssrn.1976213","DOIUrl":null,"url":null,"abstract":"Many practitioners annualize VaR just like the standard deviation. We show that this approach is incorrect, and a more sophisticated formula should be used for deriving a periodic VaR from parameters of the daily returns distribution. Another problem addressed here is the distribution of daily and periodic returns and its effect on VaR. While a fat-tailed distribution is more appropriate for modeling daily returns, we show that using the log-normal distribution is still a reasonable choice for modeling periodic returns and calculating a periodic VaR for holding periods of one month and longer.","PeriodicalId":11800,"journal":{"name":"ERN: Stock Market Risk (Topic)","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Value at Risk\",\"authors\":\"V. Khokhlov\",\"doi\":\"10.2139/ssrn.1976213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many practitioners annualize VaR just like the standard deviation. We show that this approach is incorrect, and a more sophisticated formula should be used for deriving a periodic VaR from parameters of the daily returns distribution. Another problem addressed here is the distribution of daily and periodic returns and its effect on VaR. While a fat-tailed distribution is more appropriate for modeling daily returns, we show that using the log-normal distribution is still a reasonable choice for modeling periodic returns and calculating a periodic VaR for holding periods of one month and longer.\",\"PeriodicalId\":11800,\"journal\":{\"name\":\"ERN: Stock Market Risk (Topic)\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stock Market Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1976213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stock Market Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1976213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多从业人员将VaR按年计算,就像按标准差计算一样。我们证明这种方法是不正确的,应该使用更复杂的公式从日收益分布的参数中推导出周期VaR。这里要解决的另一个问题是日收益和周期收益的分布及其对VaR的影响。虽然肥尾分布更适合建模日收益,但我们表明,使用对数正态分布仍然是建模周期收益和计算持有期限为一个月或更长时间的周期VaR的合理选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Value at Risk
Many practitioners annualize VaR just like the standard deviation. We show that this approach is incorrect, and a more sophisticated formula should be used for deriving a periodic VaR from parameters of the daily returns distribution. Another problem addressed here is the distribution of daily and periodic returns and its effect on VaR. While a fat-tailed distribution is more appropriate for modeling daily returns, we show that using the log-normal distribution is still a reasonable choice for modeling periodic returns and calculating a periodic VaR for holding periods of one month and longer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信