基于非局部应变梯度壳模型的两根垂直排列单壁氮化硼纳米管在热环境中输送流体的尺寸相关振动问题

P. R. Saffari, M. Fakhraie, M. A. Roudbari
{"title":"基于非局部应变梯度壳模型的两根垂直排列单壁氮化硼纳米管在热环境中输送流体的尺寸相关振动问题","authors":"P. R. Saffari, M. Fakhraie, M. A. Roudbari","doi":"10.22034/JSM.2020.1895313.1561","DOIUrl":null,"url":null,"abstract":"The free vibration behavior of two fluid-conveying vertically-aligned single-walled boron nitride nanotubes are studied in the present paper via the nonlocal strain gradient piezoelectric theory in conjunction with the first-order shear deformation shell assumption in thermal environments. It is supposed that the two adjacent boron nitride nanotubes are coupled with each other in the context of linear deformation by van der Waals interaction according to Lennard–Jones potential function. To achieve a more accurate modeling for low-scale structures, both hardening and softening effects of materials are considered in the nonlocal strain gradient approach. The motion equations and associated boundary conditions are derived by means of Hamilton’s variational principle, then solved utilizing differential quadrature method. Numerical studies are done to reveal the effect of different boundary conditions, size scale parameters, aspect ratio, inter-tube distance, and temperature change on the variations of dimensionless eigenfrequency and critical flow velocity.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"27 1","pages":"164-185"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Size-Dependent Vibration Problem of Two Vertically-Aligned Single-Walled Boron Nitride Nanotubes Conveying Fluid in Thermal Environment Via Nonlocal Strain Gradient Shell Model\",\"authors\":\"P. R. Saffari, M. Fakhraie, M. A. Roudbari\",\"doi\":\"10.22034/JSM.2020.1895313.1561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The free vibration behavior of two fluid-conveying vertically-aligned single-walled boron nitride nanotubes are studied in the present paper via the nonlocal strain gradient piezoelectric theory in conjunction with the first-order shear deformation shell assumption in thermal environments. It is supposed that the two adjacent boron nitride nanotubes are coupled with each other in the context of linear deformation by van der Waals interaction according to Lennard–Jones potential function. To achieve a more accurate modeling for low-scale structures, both hardening and softening effects of materials are considered in the nonlocal strain gradient approach. The motion equations and associated boundary conditions are derived by means of Hamilton’s variational principle, then solved utilizing differential quadrature method. Numerical studies are done to reveal the effect of different boundary conditions, size scale parameters, aspect ratio, inter-tube distance, and temperature change on the variations of dimensionless eigenfrequency and critical flow velocity.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"27 1\",\"pages\":\"164-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2020.1895313.1561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2020.1895313.1561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文采用非局部应变梯度压电理论,结合一阶剪切变形壳假设,研究了两种垂直排列的单壁氮化硼纳米管在热环境下的自由振动行为。根据Lennard-Jones势函数,假设相邻的两个氮化硼纳米管在线性变形的情况下通过范德华相互作用相互耦合。在非局部应变梯度方法中,考虑了材料的硬化和软化效应,以实现对小尺度结构更精确的建模。利用Hamilton变分原理推导了运动方程及其边界条件,并用微分求积分法求解。数值研究了不同边界条件、尺寸尺度参数、展弦比、管间距离和温度变化对无量纲特征频率和临界流速变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size-Dependent Vibration Problem of Two Vertically-Aligned Single-Walled Boron Nitride Nanotubes Conveying Fluid in Thermal Environment Via Nonlocal Strain Gradient Shell Model
The free vibration behavior of two fluid-conveying vertically-aligned single-walled boron nitride nanotubes are studied in the present paper via the nonlocal strain gradient piezoelectric theory in conjunction with the first-order shear deformation shell assumption in thermal environments. It is supposed that the two adjacent boron nitride nanotubes are coupled with each other in the context of linear deformation by van der Waals interaction according to Lennard–Jones potential function. To achieve a more accurate modeling for low-scale structures, both hardening and softening effects of materials are considered in the nonlocal strain gradient approach. The motion equations and associated boundary conditions are derived by means of Hamilton’s variational principle, then solved utilizing differential quadrature method. Numerical studies are done to reveal the effect of different boundary conditions, size scale parameters, aspect ratio, inter-tube distance, and temperature change on the variations of dimensionless eigenfrequency and critical flow velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信