数据匿名和推理控制的模型理论方法

Konstantine Arkoudas, A. Vashist
{"title":"数据匿名和推理控制的模型理论方法","authors":"Konstantine Arkoudas, A. Vashist","doi":"10.1145/2133601.2133632","DOIUrl":null,"url":null,"abstract":"In secure data management the inference problem occurs when data classified at a high security level becomes inferrible from data classified at lower levels. We present a model-theoretic approach to this problem that captures the epistemic state of the database user as a set of possible worlds or models. Privacy is enforced by requiring the existence of k > 1 models assigning distinct values to sensitive attributes, and implemented via model counting. We provide an algorithm mechanizing this process and show that it is sound and complete for a large class of queries.","PeriodicalId":90472,"journal":{"name":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","volume":"34 1","pages":"249-256"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A model-theoretic approach to data anonymity and inference control\",\"authors\":\"Konstantine Arkoudas, A. Vashist\",\"doi\":\"10.1145/2133601.2133632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In secure data management the inference problem occurs when data classified at a high security level becomes inferrible from data classified at lower levels. We present a model-theoretic approach to this problem that captures the epistemic state of the database user as a set of possible worlds or models. Privacy is enforced by requiring the existence of k > 1 models assigning distinct values to sensitive attributes, and implemented via model counting. We provide an algorithm mechanizing this process and show that it is sound and complete for a large class of queries.\",\"PeriodicalId\":90472,\"journal\":{\"name\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"volume\":\"34 1\",\"pages\":\"249-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2133601.2133632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CODASPY : proceedings of the ... ACM conference on data and application security and privacy. ACM Conference on Data and Application Security & Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2133601.2133632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在安全数据管理中,当高安全级别的数据与低安全级别的数据不可同义时,就会出现推断问题。我们提出了一种模型理论方法来解决这个问题,该方法将数据库用户的认知状态捕获为一组可能的世界或模型。隐私是通过要求存在k > 1个为敏感属性分配不同值的模型来实现的,并通过模型计数来实现。我们提供了一个算法机械化这一过程,并表明它是健全的和完整的查询大类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model-theoretic approach to data anonymity and inference control
In secure data management the inference problem occurs when data classified at a high security level becomes inferrible from data classified at lower levels. We present a model-theoretic approach to this problem that captures the epistemic state of the database user as a set of possible worlds or models. Privacy is enforced by requiring the existence of k > 1 models assigning distinct values to sensitive attributes, and implemented via model counting. We provide an algorithm mechanizing this process and show that it is sound and complete for a large class of queries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信