绿贻贝壳水溶性壳聚糖及其在饼干中的吸脂作用

Q3 Environmental Science
Aef Permadi, Rufnia Ayu Afifah, Dita Ambar Kartika Apriani, Farida Ariyani
{"title":"绿贻贝壳水溶性壳聚糖及其在饼干中的吸脂作用","authors":"Aef Permadi, Rufnia Ayu Afifah, Dita Ambar Kartika Apriani, Farida Ariyani","doi":"10.15578/squalen.731","DOIUrl":null,"url":null,"abstract":"Green mussel chitin can be converted by H2O2 into water-soluble chitosan (WSC). This can subsequently be utilized for a variety of different purposes, such as a fat binder. This study examines how different H2O2 concentrations (13, 21.5, and 30%) affected the properties of WSC (yield, moisture content, ash content, degree of deacetylation, and solubility in water and acid). Moreover as well as how WSC (8%, 9%, and 10%) affected the hedonic scores, proximate composition, and fat binding capacity of weight-loss cookies. A single factor Completely Randomized Design and single-factor ANOVA were used to analyze the data, followed by Duncan’s additional testing as necessary. The results showed that water-soluble chitosan was impacted by H2O2 concentration in that its yield and ash content decreased, its color changed to a brownish, and its solubility in acid and moisture content all increased. According to De Garmo’s Effectiveness Index Test, 30% H2O2 concentration resulted in the best WSC. The addition of WSC did not affect the hedonic quality, protein, moisture, or carbohydrate contents of the cookies, but it did have an impact on the ash and fat contents. The ability of all cookie samples in all treatments to bind fat in liquified butter and peanut oil validates the use of cookies containing WSC in body weight loss research.","PeriodicalId":21935,"journal":{"name":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water Soluble Chitosan from Green Mussel (Perna viridis) Shells and Its Use As Fat-Absorber In Cookies\",\"authors\":\"Aef Permadi, Rufnia Ayu Afifah, Dita Ambar Kartika Apriani, Farida Ariyani\",\"doi\":\"10.15578/squalen.731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green mussel chitin can be converted by H2O2 into water-soluble chitosan (WSC). This can subsequently be utilized for a variety of different purposes, such as a fat binder. This study examines how different H2O2 concentrations (13, 21.5, and 30%) affected the properties of WSC (yield, moisture content, ash content, degree of deacetylation, and solubility in water and acid). Moreover as well as how WSC (8%, 9%, and 10%) affected the hedonic scores, proximate composition, and fat binding capacity of weight-loss cookies. A single factor Completely Randomized Design and single-factor ANOVA were used to analyze the data, followed by Duncan’s additional testing as necessary. The results showed that water-soluble chitosan was impacted by H2O2 concentration in that its yield and ash content decreased, its color changed to a brownish, and its solubility in acid and moisture content all increased. According to De Garmo’s Effectiveness Index Test, 30% H2O2 concentration resulted in the best WSC. The addition of WSC did not affect the hedonic quality, protein, moisture, or carbohydrate contents of the cookies, but it did have an impact on the ash and fat contents. The ability of all cookie samples in all treatments to bind fat in liquified butter and peanut oil validates the use of cookies containing WSC in body weight loss research.\",\"PeriodicalId\":21935,\"journal\":{\"name\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15578/squalen.731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15578/squalen.731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

绿贻贝甲壳素可通过H2O2转化为水溶性壳聚糖(WSC)。随后可将其用于各种不同的目的,例如用作脂肪粘合剂。本研究考察了不同H2O2浓度(13%、21.5和30%)对WSC性能(产率、水分含量、灰分含量、去乙酰化程度以及在水和酸中的溶解度)的影响。此外,WSC(8%, 9%和10%)如何影响减肥饼干的享乐分数,近似成分和脂肪结合能力。采用单因素完全随机设计和单因素方差分析对数据进行分析,必要时进行Duncan附加检验。结果表明:水溶性壳聚糖受H2O2浓度的影响,产率降低,灰分含量降低,颜色呈褐色,酸溶解度和水分含量增加;根据De Garmo有效性指数测试,30% H2O2浓度的WSC最佳。添加WSC对甜饼的甜度、蛋白质、水分和碳水化合物含量没有影响,但对甜饼的灰分和脂肪含量有影响。所有饼干样品在所有处理下结合液态黄油和花生油中的脂肪的能力验证了含有WSC的饼干在减肥研究中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water Soluble Chitosan from Green Mussel (Perna viridis) Shells and Its Use As Fat-Absorber In Cookies
Green mussel chitin can be converted by H2O2 into water-soluble chitosan (WSC). This can subsequently be utilized for a variety of different purposes, such as a fat binder. This study examines how different H2O2 concentrations (13, 21.5, and 30%) affected the properties of WSC (yield, moisture content, ash content, degree of deacetylation, and solubility in water and acid). Moreover as well as how WSC (8%, 9%, and 10%) affected the hedonic scores, proximate composition, and fat binding capacity of weight-loss cookies. A single factor Completely Randomized Design and single-factor ANOVA were used to analyze the data, followed by Duncan’s additional testing as necessary. The results showed that water-soluble chitosan was impacted by H2O2 concentration in that its yield and ash content decreased, its color changed to a brownish, and its solubility in acid and moisture content all increased. According to De Garmo’s Effectiveness Index Test, 30% H2O2 concentration resulted in the best WSC. The addition of WSC did not affect the hedonic quality, protein, moisture, or carbohydrate contents of the cookies, but it did have an impact on the ash and fat contents. The ability of all cookie samples in all treatments to bind fat in liquified butter and peanut oil validates the use of cookies containing WSC in body weight loss research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信