{"title":"用于可逆固体氧化物燃料电池的多端口双向功率转换系统","authors":"Xiang Lin, K. Sun, Jin Lin, Zhe Zhang, W. Kong","doi":"10.23919/IPEC.2018.8507566","DOIUrl":null,"url":null,"abstract":"Reversible Solid Oxide Fuel Cell/Electrolyser Cell (SOFC/EC) technology is an attractive solution for high energy storage system in the utility grid. However, the wide range of voltage and low power of single SOFC/EC stack make it difficult to design the power conversion system for SOFC/EC storage system. In this paper, a new power multi-port bidirectional conversion system is proposed to connect multiple SOFC/EC stacks with the utility grid. The converter structure contains a multi-port structure with two conversion stages. The two-stage conversion structure is first analyzed to address the wide-range of SOFC/EC stack’s voltage. The high-step-down CLLC resonant converter is implemented to achieve efficient voltage transformation, and the interleaved buck converter is employed as the second stage to control the voltage of SOFC/EC stack within a wide range. The derivation of the multi-port structure is introduced, and the control strategy of proposed conversion system is also discussed in this paper. The proposed conversion system enables a flexible control for the application of multiple SOFC/EC stacks. The feature of the proposed system is verified by the experiments from a down-scale prototype.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"6 1","pages":"3460-3465"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Multi-Port Bidirectional Power Conversion System for Reversible Solid Oxide Fuel Cell Applications\",\"authors\":\"Xiang Lin, K. Sun, Jin Lin, Zhe Zhang, W. Kong\",\"doi\":\"10.23919/IPEC.2018.8507566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible Solid Oxide Fuel Cell/Electrolyser Cell (SOFC/EC) technology is an attractive solution for high energy storage system in the utility grid. However, the wide range of voltage and low power of single SOFC/EC stack make it difficult to design the power conversion system for SOFC/EC storage system. In this paper, a new power multi-port bidirectional conversion system is proposed to connect multiple SOFC/EC stacks with the utility grid. The converter structure contains a multi-port structure with two conversion stages. The two-stage conversion structure is first analyzed to address the wide-range of SOFC/EC stack’s voltage. The high-step-down CLLC resonant converter is implemented to achieve efficient voltage transformation, and the interleaved buck converter is employed as the second stage to control the voltage of SOFC/EC stack within a wide range. The derivation of the multi-port structure is introduced, and the control strategy of proposed conversion system is also discussed in this paper. The proposed conversion system enables a flexible control for the application of multiple SOFC/EC stacks. The feature of the proposed system is verified by the experiments from a down-scale prototype.\",\"PeriodicalId\":6610,\"journal\":{\"name\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"volume\":\"6 1\",\"pages\":\"3460-3465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IPEC.2018.8507566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-Port Bidirectional Power Conversion System for Reversible Solid Oxide Fuel Cell Applications
Reversible Solid Oxide Fuel Cell/Electrolyser Cell (SOFC/EC) technology is an attractive solution for high energy storage system in the utility grid. However, the wide range of voltage and low power of single SOFC/EC stack make it difficult to design the power conversion system for SOFC/EC storage system. In this paper, a new power multi-port bidirectional conversion system is proposed to connect multiple SOFC/EC stacks with the utility grid. The converter structure contains a multi-port structure with two conversion stages. The two-stage conversion structure is first analyzed to address the wide-range of SOFC/EC stack’s voltage. The high-step-down CLLC resonant converter is implemented to achieve efficient voltage transformation, and the interleaved buck converter is employed as the second stage to control the voltage of SOFC/EC stack within a wide range. The derivation of the multi-port structure is introduced, and the control strategy of proposed conversion system is also discussed in this paper. The proposed conversion system enables a flexible control for the application of multiple SOFC/EC stacks. The feature of the proposed system is verified by the experiments from a down-scale prototype.