Illustration2Vec:插图的语义向量表示

Masaki Saito, Yusuke Matsui
{"title":"Illustration2Vec:插图的语义向量表示","authors":"Masaki Saito, Yusuke Matsui","doi":"10.1145/2820903.2820907","DOIUrl":null,"url":null,"abstract":"Referring to existing illustrations helps novice drawers to realize their ideas. To find such helpful references from a large image collection, we first build a semantic vector representation of illustrations by training convolutional neural networks. As the proposed vector space correctly reflects the semantic meanings of illustrations, users can efficiently search for references with similar attributes. Besides the search with a single query, a semantic morphing algorithm that searches the intermediate illustrations that gradually connect two queries is proposed. Several experiments were conducted to demonstrate the effectiveness of our methods.","PeriodicalId":21720,"journal":{"name":"SIGGRAPH Asia 2015 Technical Briefs","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Illustration2Vec: a semantic vector representation of illustrations\",\"authors\":\"Masaki Saito, Yusuke Matsui\",\"doi\":\"10.1145/2820903.2820907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Referring to existing illustrations helps novice drawers to realize their ideas. To find such helpful references from a large image collection, we first build a semantic vector representation of illustrations by training convolutional neural networks. As the proposed vector space correctly reflects the semantic meanings of illustrations, users can efficiently search for references with similar attributes. Besides the search with a single query, a semantic morphing algorithm that searches the intermediate illustrations that gradually connect two queries is proposed. Several experiments were conducted to demonstrate the effectiveness of our methods.\",\"PeriodicalId\":21720,\"journal\":{\"name\":\"SIGGRAPH Asia 2015 Technical Briefs\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2015 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2820903.2820907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2015 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2820903.2820907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

参考现有的插图可以帮助新手实现他们的想法。为了从大型图像集合中找到有用的参考,我们首先通过训练卷积神经网络构建插图的语义向量表示。由于所提出的向量空间正确地反映了插图的语义含义,用户可以高效地搜索具有相似属性的参考文献。在对单个查询进行搜索的基础上,提出了一种语义变形算法,对逐渐连接两个查询的中间图进行搜索。我们做了几个实验来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Illustration2Vec: a semantic vector representation of illustrations
Referring to existing illustrations helps novice drawers to realize their ideas. To find such helpful references from a large image collection, we first build a semantic vector representation of illustrations by training convolutional neural networks. As the proposed vector space correctly reflects the semantic meanings of illustrations, users can efficiently search for references with similar attributes. Besides the search with a single query, a semantic morphing algorithm that searches the intermediate illustrations that gradually connect two queries is proposed. Several experiments were conducted to demonstrate the effectiveness of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信