使用Kinect行走运动的个人身份验证

Chunyu Guo, S. Ito, Momoyo Ito, M. Fukumi
{"title":"使用Kinect行走运动的个人身份验证","authors":"Chunyu Guo, S. Ito, Momoyo Ito, M. Fukumi","doi":"10.1109/ISPACS48206.2019.8986388","DOIUrl":null,"url":null,"abstract":"In recent years, with the rapid development of the information society, the importance of personal authentication has become higher and higher. This paper focuses on the use of a Kinect sensor to obtain walking characteristics for personal authentication. In terms of the proposal method, Kinect is used to obtain body's physical feature quantity, such as the angle of joint bending when a person walks, the displacement of coordinates. In terms of learning recognition, the support vector machine and the obtained feature amount are used for personal authentication. We measured 3 subjects data 5 times a day for 4 days, and obtained an average recognition accuracy of 77.4 % using cross-validation.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personal Authentication by Walking Motion using Kinect\",\"authors\":\"Chunyu Guo, S. Ito, Momoyo Ito, M. Fukumi\",\"doi\":\"10.1109/ISPACS48206.2019.8986388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the rapid development of the information society, the importance of personal authentication has become higher and higher. This paper focuses on the use of a Kinect sensor to obtain walking characteristics for personal authentication. In terms of the proposal method, Kinect is used to obtain body's physical feature quantity, such as the angle of joint bending when a person walks, the displacement of coordinates. In terms of learning recognition, the support vector machine and the obtained feature amount are used for personal authentication. We measured 3 subjects data 5 times a day for 4 days, and obtained an average recognition accuracy of 77.4 % using cross-validation.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"1 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着信息社会的飞速发展,个人认证的重要性越来越高。本文的重点是利用Kinect传感器获取行走特征进行个人认证。在提议方法中,利用Kinect获取人体的物理特征量,如人行走时关节弯曲的角度、坐标的位移等。在学习识别方面,使用支持向量机和获得的特征量进行个人认证。我们每天测量3名受试者数据5次,持续4天,通过交叉验证,平均识别准确率为77.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personal Authentication by Walking Motion using Kinect
In recent years, with the rapid development of the information society, the importance of personal authentication has become higher and higher. This paper focuses on the use of a Kinect sensor to obtain walking characteristics for personal authentication. In terms of the proposal method, Kinect is used to obtain body's physical feature quantity, such as the angle of joint bending when a person walks, the displacement of coordinates. In terms of learning recognition, the support vector machine and the obtained feature amount are used for personal authentication. We measured 3 subjects data 5 times a day for 4 days, and obtained an average recognition accuracy of 77.4 % using cross-validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信