直接和间接的方法,以优化肌肉力量的反应脉冲序列的电刺激

T. Bakir, B. Bonnard, L. Bourdin, J. Rouot
{"title":"直接和间接的方法,以优化肌肉力量的反应脉冲序列的电刺激","authors":"T. Bakir, B. Bonnard, L. Bourdin, J. Rouot","doi":"10.1051/proc/202171101","DOIUrl":null,"url":null,"abstract":"Recent force-fatigue mathematical models in biomechanics [7] allow to predict the muscular force response to functional electrical stimulation (FES) and leads to the optimal control problem of maximizing the force. The stimulations are Dirac pulses and the control parameters are the pulses amplitudes and times of application, the number of pulses is physically limited and the model leads to a sampled data control problem. The aim of this article is to present and compare two methods. The first method is a direct optimization scheme where a further refined numerical discretization is applied on the dynamics. The second method is an indirect scheme: first-order Pontryagin type necessary conditions are derived and used to compute the optimal sampling times.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direct and indirect methods to optimize the muscular force response to a pulse train of electrical stimulation\",\"authors\":\"T. Bakir, B. Bonnard, L. Bourdin, J. Rouot\",\"doi\":\"10.1051/proc/202171101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent force-fatigue mathematical models in biomechanics [7] allow to predict the muscular force response to functional electrical stimulation (FES) and leads to the optimal control problem of maximizing the force. The stimulations are Dirac pulses and the control parameters are the pulses amplitudes and times of application, the number of pulses is physically limited and the model leads to a sampled data control problem. The aim of this article is to present and compare two methods. The first method is a direct optimization scheme where a further refined numerical discretization is applied on the dynamics. The second method is an indirect scheme: first-order Pontryagin type necessary conditions are derived and used to compute the optimal sampling times.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202171101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202171101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近生物力学中的力-疲劳数学模型[7]可以预测肌肉对功能性电刺激(FES)的力响应,并导致力最大化的最优控制问题。激励是狄拉克脉冲,控制参数是脉冲的振幅和应用次数,脉冲的数量受到物理限制,模型导致采样数据控制问题。本文的目的是介绍和比较两种方法。第一种方法是直接优化方案,其中进一步细化数值离散化应用于动力学。第二种方法是一种间接方案:导出一阶庞特里亚金型必要条件并用于计算最优采样时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct and indirect methods to optimize the muscular force response to a pulse train of electrical stimulation
Recent force-fatigue mathematical models in biomechanics [7] allow to predict the muscular force response to functional electrical stimulation (FES) and leads to the optimal control problem of maximizing the force. The stimulations are Dirac pulses and the control parameters are the pulses amplitudes and times of application, the number of pulses is physically limited and the model leads to a sampled data control problem. The aim of this article is to present and compare two methods. The first method is a direct optimization scheme where a further refined numerical discretization is applied on the dynamics. The second method is an indirect scheme: first-order Pontryagin type necessary conditions are derived and used to compute the optimal sampling times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信