基于点云数据集的现有建筑几何数字孪生的自动构建

Viktor Drobnyi, Shuyan Li, I. Brilakis
{"title":"基于点云数据集的现有建筑几何数字孪生的自动构建","authors":"Viktor Drobnyi, Shuyan Li, I. Brilakis","doi":"10.35490/ec3.2023.343","DOIUrl":null,"url":null,"abstract":"Digitising the geometry of existing buildings remains expensive due to the high amount of manual work necessary to process raw data. This indicates the demand for automatic solutions for geometry digitisation. This paper presents a few methods to detect and model structural objects and relations between objects and surfaces in large-scale occluded point clouds. We show that these methods give promising results and manage to capture the majority of the target entities.","PeriodicalId":7326,"journal":{"name":"Advances in Informatics and Computing in Civil and Construction Engineering","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic construction of geometric digital twins of existing buildings from point cloud datasets\",\"authors\":\"Viktor Drobnyi, Shuyan Li, I. Brilakis\",\"doi\":\"10.35490/ec3.2023.343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digitising the geometry of existing buildings remains expensive due to the high amount of manual work necessary to process raw data. This indicates the demand for automatic solutions for geometry digitisation. This paper presents a few methods to detect and model structural objects and relations between objects and surfaces in large-scale occluded point clouds. We show that these methods give promising results and manage to capture the majority of the target entities.\",\"PeriodicalId\":7326,\"journal\":{\"name\":\"Advances in Informatics and Computing in Civil and Construction Engineering\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Informatics and Computing in Civil and Construction Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35490/ec3.2023.343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Informatics and Computing in Civil and Construction Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35490/ec3.2023.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于处理原始数据需要大量的手工工作,因此将现有建筑的几何图形数字化仍然是昂贵的。这表明了对几何数字化自动化解决方案的需求。本文介绍了在大尺度遮挡点云中对结构物体以及物体与表面之间的关系进行检测和建模的几种方法。我们表明,这些方法给出了有希望的结果,并设法捕获大多数目标实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic construction of geometric digital twins of existing buildings from point cloud datasets
Digitising the geometry of existing buildings remains expensive due to the high amount of manual work necessary to process raw data. This indicates the demand for automatic solutions for geometry digitisation. This paper presents a few methods to detect and model structural objects and relations between objects and surfaces in large-scale occluded point clouds. We show that these methods give promising results and manage to capture the majority of the target entities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信