{"title":"氧化钇稳定氧化锆在1400℃时的晶界电阻率","authors":"Jun Wang, A. Du, Di Yang, R. Raj, H. Conrad","doi":"10.1155/2013/370603","DOIUrl":null,"url":null,"abstract":"The grain size dependence of the bulk resistivity of 3 mol% yttria-stabilized zirconia at 1400°C was determined from the effect of a dc electric field V/cm on grain growth and the corresponding electric current during isothermal annealing tests. Employing the brick layer model, the present annealing test results were in accordance with extrapolations of the values obtained at lower temperature employing impedance spectroscopy and 4-point-probe dc. The combined values give that the magnitude of the grain boundary resistivity ohm-cm. The electric field across the grain boundary width was 28–43 times the applied field for the grain size and current ranges in the present annealing test.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"49 1","pages":"1-4"},"PeriodicalIF":18.6000,"publicationDate":"2013-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C\",\"authors\":\"Jun Wang, A. Du, Di Yang, R. Raj, H. Conrad\",\"doi\":\"10.1155/2013/370603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The grain size dependence of the bulk resistivity of 3 mol% yttria-stabilized zirconia at 1400°C was determined from the effect of a dc electric field V/cm on grain growth and the corresponding electric current during isothermal annealing tests. Employing the brick layer model, the present annealing test results were in accordance with extrapolations of the values obtained at lower temperature employing impedance spectroscopy and 4-point-probe dc. The combined values give that the magnitude of the grain boundary resistivity ohm-cm. The electric field across the grain boundary width was 28–43 times the applied field for the grain size and current ranges in the present annealing test.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"49 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2013-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/370603\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/370603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C
The grain size dependence of the bulk resistivity of 3 mol% yttria-stabilized zirconia at 1400°C was determined from the effect of a dc electric field V/cm on grain growth and the corresponding electric current during isothermal annealing tests. Employing the brick layer model, the present annealing test results were in accordance with extrapolations of the values obtained at lower temperature employing impedance spectroscopy and 4-point-probe dc. The combined values give that the magnitude of the grain boundary resistivity ohm-cm. The electric field across the grain boundary width was 28–43 times the applied field for the grain size and current ranges in the present annealing test.
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.