流体中气体溶液的数值解:分数阶导数模型

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Shahrokh Esmaeili
{"title":"流体中气体溶液的数值解:分数阶导数模型","authors":"Shahrokh Esmaeili","doi":"10.22052/IJMC.2017.54560.1203","DOIUrl":null,"url":null,"abstract":"‎A computational technique for solution of mathematical model of gas solution in a fluid is presented‎. ‎This model describes the change of mass of the gas volume due to diffusion through the contact surface‎. ‎An appropriate representation of the solution based on the M\"{u}ntz polynomials reduces its numerical treatment to the solution of a linear system of algebraic equations‎. ‎Numerical examples are given and discussed to illustrate the effectiveness of the proposed approach‎.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical solution of gas solution in a fluid: fractional derivative model\",\"authors\":\"Shahrokh Esmaeili\",\"doi\":\"10.22052/IJMC.2017.54560.1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎A computational technique for solution of mathematical model of gas solution in a fluid is presented‎. ‎This model describes the change of mass of the gas volume due to diffusion through the contact surface‎. ‎An appropriate representation of the solution based on the M\\\"{u}ntz polynomials reduces its numerical treatment to the solution of a linear system of algebraic equations‎. ‎Numerical examples are given and discussed to illustrate the effectiveness of the proposed approach‎.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2017.54560.1203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.54560.1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种求解流体中气体溶液数学模型的计算方法。该模型描述了由于通过接触面扩散而引起的气体体积质量的变化。基于M {u}ntz多项式的解的适当表示将其数值处理简化为代数方程的线性系统的解。给出并讨论了数值算例,以说明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of gas solution in a fluid: fractional derivative model
‎A computational technique for solution of mathematical model of gas solution in a fluid is presented‎. ‎This model describes the change of mass of the gas volume due to diffusion through the contact surface‎. ‎An appropriate representation of the solution based on the M"{u}ntz polynomials reduces its numerical treatment to the solution of a linear system of algebraic equations‎. ‎Numerical examples are given and discussed to illustrate the effectiveness of the proposed approach‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信