大规模图像检索中降维方法的比较研究

Bo Cheng, L. Zhuo, Jing Zhang
{"title":"大规模图像检索中降维方法的比较研究","authors":"Bo Cheng, L. Zhuo, Jing Zhang","doi":"10.1109/ISM.2013.86","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction plays a significant role for the performance of large-scale image retrieval. In this paper, various dimensionality reduction methods are compared to validate their own performance in image retrieval. For this purpose, first, the Scale Invariant Feature Transform (SIFT) features and HSV (Hue, Saturation, Value) histogram are extracted as image features. Second, the Principal Component Analysis (PCA), Fisher Linear Discriminant Analysis (FLDA), Local Fisher Discriminant Analysis (LFDA), Isometric Mapping (ISOMAP), Locally Linear Embedding (LLE), and Locality Preserving Projections (LPP) are respectively applied to reduce the dimensions of SIFT feature descriptors and color information, which can be used to generate vocabulary trees. Finally, through setting the match weights of vocabulary trees, large-scale image retrieval scheme is implemented. By comparing multiple sets of experimental data from several platforms, it can be concluded that dimensionality reduction method of LLE and LPP can effectively reduce the computational cost of image features, and maintain the high retrieval performance as well.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"105 1","pages":"445-450"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Comparative Study on Dimensionality Reduction in Large-Scale Image Retrieval\",\"authors\":\"Bo Cheng, L. Zhuo, Jing Zhang\",\"doi\":\"10.1109/ISM.2013.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimensionality reduction plays a significant role for the performance of large-scale image retrieval. In this paper, various dimensionality reduction methods are compared to validate their own performance in image retrieval. For this purpose, first, the Scale Invariant Feature Transform (SIFT) features and HSV (Hue, Saturation, Value) histogram are extracted as image features. Second, the Principal Component Analysis (PCA), Fisher Linear Discriminant Analysis (FLDA), Local Fisher Discriminant Analysis (LFDA), Isometric Mapping (ISOMAP), Locally Linear Embedding (LLE), and Locality Preserving Projections (LPP) are respectively applied to reduce the dimensions of SIFT feature descriptors and color information, which can be used to generate vocabulary trees. Finally, through setting the match weights of vocabulary trees, large-scale image retrieval scheme is implemented. By comparing multiple sets of experimental data from several platforms, it can be concluded that dimensionality reduction method of LLE and LPP can effectively reduce the computational cost of image features, and maintain the high retrieval performance as well.\",\"PeriodicalId\":6311,\"journal\":{\"name\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"volume\":\"105 1\",\"pages\":\"445-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2013.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

降维对大规模图像检索的性能起着至关重要的作用。本文比较了各种降维方法,验证了它们在图像检索中的性能。为此,首先提取尺度不变特征变换(SIFT)特征和HSV (Hue, Saturation, Value)直方图作为图像特征;其次,分别采用主成分分析(PCA)、Fisher线性判别分析(FLDA)、局部Fisher判别分析(LFDA)、等长映射(ISOMAP)、局部线性嵌入(LLE)和局部保持投影(LPP)对SIFT特征描述符和颜色信息进行降维,生成词汇树;最后,通过设置词汇树的匹配权值,实现大规模图像检索方案。通过比较多个平台的多组实验数据,可以得出LLE和LPP降维方法可以有效降低图像特征的计算成本,并保持较高的检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study on Dimensionality Reduction in Large-Scale Image Retrieval
Dimensionality reduction plays a significant role for the performance of large-scale image retrieval. In this paper, various dimensionality reduction methods are compared to validate their own performance in image retrieval. For this purpose, first, the Scale Invariant Feature Transform (SIFT) features and HSV (Hue, Saturation, Value) histogram are extracted as image features. Second, the Principal Component Analysis (PCA), Fisher Linear Discriminant Analysis (FLDA), Local Fisher Discriminant Analysis (LFDA), Isometric Mapping (ISOMAP), Locally Linear Embedding (LLE), and Locality Preserving Projections (LPP) are respectively applied to reduce the dimensions of SIFT feature descriptors and color information, which can be used to generate vocabulary trees. Finally, through setting the match weights of vocabulary trees, large-scale image retrieval scheme is implemented. By comparing multiple sets of experimental data from several platforms, it can be concluded that dimensionality reduction method of LLE and LPP can effectively reduce the computational cost of image features, and maintain the high retrieval performance as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信