{"title":"具有Riesz和背景势的非局部周长的极小值的不存在性","authors":"F. Onoue","doi":"10.4171/rsmup/93","DOIUrl":null,"url":null,"abstract":"We consider the nonexistence of minimizers for the energy containing a nonlocal perimeter with a general kernel K, a Riesz potential, and a background potential in R with N ≥ 2 under the volume constraint. We show that the energy has no minimizer for a sufficiently large volume under suitable assumptions on K. The proof is based on the partition of a minimizer and the comparison of the sum of the energy for each part with the energy for the original configuration. Mathematics Subject Classification (2010). 49J40, 49Q10, 49Q20, 28A75.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonexistence of minimizers for a nonlocal perimeter with a Riesz and a background potential\",\"authors\":\"F. Onoue\",\"doi\":\"10.4171/rsmup/93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonexistence of minimizers for the energy containing a nonlocal perimeter with a general kernel K, a Riesz potential, and a background potential in R with N ≥ 2 under the volume constraint. We show that the energy has no minimizer for a sufficiently large volume under suitable assumptions on K. The proof is based on the partition of a minimizer and the comparison of the sum of the energy for each part with the energy for the original configuration. Mathematics Subject Classification (2010). 49J40, 49Q10, 49Q20, 28A75.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonexistence of minimizers for a nonlocal perimeter with a Riesz and a background potential
We consider the nonexistence of minimizers for the energy containing a nonlocal perimeter with a general kernel K, a Riesz potential, and a background potential in R with N ≥ 2 under the volume constraint. We show that the energy has no minimizer for a sufficiently large volume under suitable assumptions on K. The proof is based on the partition of a minimizer and the comparison of the sum of the energy for each part with the energy for the original configuration. Mathematics Subject Classification (2010). 49J40, 49Q10, 49Q20, 28A75.