具有Riesz和背景势的非局部周长的极小值的不存在性

F. Onoue
{"title":"具有Riesz和背景势的非局部周长的极小值的不存在性","authors":"F. Onoue","doi":"10.4171/rsmup/93","DOIUrl":null,"url":null,"abstract":"We consider the nonexistence of minimizers for the energy containing a nonlocal perimeter with a general kernel K, a Riesz potential, and a background potential in R with N ≥ 2 under the volume constraint. We show that the energy has no minimizer for a sufficiently large volume under suitable assumptions on K. The proof is based on the partition of a minimizer and the comparison of the sum of the energy for each part with the energy for the original configuration. Mathematics Subject Classification (2010). 49J40, 49Q10, 49Q20, 28A75.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonexistence of minimizers for a nonlocal perimeter with a Riesz and a background potential\",\"authors\":\"F. Onoue\",\"doi\":\"10.4171/rsmup/93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonexistence of minimizers for the energy containing a nonlocal perimeter with a general kernel K, a Riesz potential, and a background potential in R with N ≥ 2 under the volume constraint. We show that the energy has no minimizer for a sufficiently large volume under suitable assumptions on K. The proof is based on the partition of a minimizer and the comparison of the sum of the energy for each part with the energy for the original configuration. Mathematics Subject Classification (2010). 49J40, 49Q10, 49Q20, 28A75.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在体积约束下,考虑含有一般核为K的非局部周长、Riesz势和R中N≥2的背景势的能量的极小值不存在性。我们证明了在k上适当的假设下,对于足够大的体积,能量没有最小值。这个证明是基于最小值的划分和每个部分的能量总和与原始构型的能量的比较。数学学科分类(2010)。49j40, 49q10, 49q20, 28a75。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonexistence of minimizers for a nonlocal perimeter with a Riesz and a background potential
We consider the nonexistence of minimizers for the energy containing a nonlocal perimeter with a general kernel K, a Riesz potential, and a background potential in R with N ≥ 2 under the volume constraint. We show that the energy has no minimizer for a sufficiently large volume under suitable assumptions on K. The proof is based on the partition of a minimizer and the comparison of the sum of the energy for each part with the energy for the original configuration. Mathematics Subject Classification (2010). 49J40, 49Q10, 49Q20, 28A75.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信