具有简单约束的非凸函数的改进投影牛顿格式

Q3 Decision Sciences
Suvra Chakraborty Kanti, G. Panda
{"title":"具有简单约束的非凸函数的改进投影牛顿格式","authors":"Suvra Chakraborty Kanti, G. Panda","doi":"10.2298/YJOR200515002C","DOIUrl":null,"url":null,"abstract":"In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified projected Newton scheme for non-convex function with simple constraints\",\"authors\":\"Suvra Chakraborty Kanti, G. Panda\",\"doi\":\"10.2298/YJOR200515002C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/YJOR200515002C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/YJOR200515002C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种寻找具有简单约束的非凸优化问题的局部最小点的下降线搜索格式。该思想保证了方案摆脱鞍点,最终求出非凸优化问题的局部极小点。在每次迭代时,通过对目标函数的Hessian矩阵进行对称不定矩阵分解,形成了该方案的正定缩放矩阵。给出了数值说明,并证明了该方案的全局收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified projected Newton scheme for non-convex function with simple constraints
In this paper, a descent line search scheme is proposed to find a local minimum point of a non-convex optimization problem with simple constraints. The idea ensures that the scheme escapes the saddle points and finally settles for a local minimum point of the non-convex optimization problem. A positive definite scaling matrix for the proposed scheme is formed through symmetric indefinite matrix factorization of the Hessian matrix of the objective function at each iteration. A numerical illustration is provided, and the global convergence of the scheme is also justified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信