自适应MCMC的贝叶斯优化

Nimalan Mahendran, Ziyun Wang, F. Hamze, Nando de Freitas
{"title":"自适应MCMC的贝叶斯优化","authors":"Nimalan Mahendran, Ziyun Wang, F. Hamze, Nando de Freitas","doi":"10.14288/1.0052032","DOIUrl":null,"url":null,"abstract":"This paper proposes a new randomized strategy for adaptive MCMC using Bayesian optimization. This approach applies to non-differentiable objective functions and trades off exploration and exploitation to reduce the number of potentially costly objective function evaluations. We demonstrate the strategy in the complex setting of sampling from constrained, discrete and densely connected probabilistic graphical models where, for each variation of the problem, one needs to adjust the parameters of the proposal mechanism automatically to ensure efficient mixing of the Markov chains.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian optimization for adaptive MCMC\",\"authors\":\"Nimalan Mahendran, Ziyun Wang, F. Hamze, Nando de Freitas\",\"doi\":\"10.14288/1.0052032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new randomized strategy for adaptive MCMC using Bayesian optimization. This approach applies to non-differentiable objective functions and trades off exploration and exploitation to reduce the number of potentially costly objective function evaluations. We demonstrate the strategy in the complex setting of sampling from constrained, discrete and densely connected probabilistic graphical models where, for each variation of the problem, one needs to adjust the parameters of the proposal mechanism automatically to ensure efficient mixing of the Markov chains.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14288/1.0052032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14288/1.0052032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于贝叶斯优化的自适应MCMC随机化策略。这种方法适用于不可微的目标函数,并权衡了探索和开发,以减少潜在昂贵的目标函数评估的数量。我们演示了该策略在从约束、离散和密集连接的概率图模型中采样的复杂设置中,对于问题的每个变化,需要自动调整提议机制的参数,以确保马尔可夫链的有效混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian optimization for adaptive MCMC
This paper proposes a new randomized strategy for adaptive MCMC using Bayesian optimization. This approach applies to non-differentiable objective functions and trades off exploration and exploitation to reduce the number of potentially costly objective function evaluations. We demonstrate the strategy in the complex setting of sampling from constrained, discrete and densely connected probabilistic graphical models where, for each variation of the problem, one needs to adjust the parameters of the proposal mechanism automatically to ensure efficient mixing of the Markov chains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信