{"title":"由变分偏微分方程得到Riccati偏微分方程的初值","authors":"V. Costanza, P. Rivadeneira","doi":"10.1590/S1807-03022011000200005","DOIUrl":null,"url":null,"abstract":"The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Initial values for Riccati ODEs from variational PDEs\",\"authors\":\"V. Costanza, P. Rivadeneira\",\"doi\":\"10.1590/S1807-03022011000200005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.\",\"PeriodicalId\":50649,\"journal\":{\"name\":\"Computational & Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1590/S1807-03022011000200005\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022011000200005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Initial values for Riccati ODEs from variational PDEs
The recently discovered variational PDEs (partial differential equations) for finding missing boundary conditions in Hamilton equations of optimal control are applied to the extended-space transformation of time-variant linear-quadratic regulator (LQR) problems. These problems become autonomous but with nonlinear dynamics and costs. The numerical solutions to the PDEs are checked against the analytical solutions to the original LQR problem. This is the first validation of the PDEs in the literature for a nonlinear context. It is also found that the initial value of the Riccati matrix can be obtained from the spatial derivative of the Hamiltonian flow, which satisfies the variational equation. This last result has practical implications when implementing two-degrees-of freedom control strategies for nonlinear systems with generalized costs.
期刊介绍:
Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics).
The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.