C. Ndlangamandla, K. Bharuth-Ram, O. M. Ndwandwe, B. Ngom, M. Maaza
{"title":"钌掺杂赤铁矿纳米结构的水合成:形态、结构、光学和磁性研究","authors":"C. Ndlangamandla, K. Bharuth-Ram, O. M. Ndwandwe, B. Ngom, M. Maaza","doi":"10.1155/2015/654587","DOIUrl":null,"url":null,"abstract":"Hematite nanorods doped with ruthenium were successfully deposited on fluorine doped tin oxide (FTO) glass substrates using aqueous chemical growth. Using complementary surface/interface investigation techniques, the Ru incorporation in the Ru-α-Fe2O3 nanorods was evidenced. The optical band gap was found to be Ru doping concentration dependent: varying from 2.32 (2) to 2.47 (2) eV. These band gap values are well suited for the targeted water splitting process without application of an external bias.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"122 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Aqueous Synthesis of Ru Doped Hematite Nanostructures: A Morphological, Structural, Optical, and Magnetic Study\",\"authors\":\"C. Ndlangamandla, K. Bharuth-Ram, O. M. Ndwandwe, B. Ngom, M. Maaza\",\"doi\":\"10.1155/2015/654587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematite nanorods doped with ruthenium were successfully deposited on fluorine doped tin oxide (FTO) glass substrates using aqueous chemical growth. Using complementary surface/interface investigation techniques, the Ru incorporation in the Ru-α-Fe2O3 nanorods was evidenced. The optical band gap was found to be Ru doping concentration dependent: varying from 2.32 (2) to 2.47 (2) eV. These band gap values are well suited for the targeted water splitting process without application of an external bias.\",\"PeriodicalId\":16507,\"journal\":{\"name\":\"Journal of Nanoparticles\",\"volume\":\"122 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/654587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/654587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aqueous Synthesis of Ru Doped Hematite Nanostructures: A Morphological, Structural, Optical, and Magnetic Study
Hematite nanorods doped with ruthenium were successfully deposited on fluorine doped tin oxide (FTO) glass substrates using aqueous chemical growth. Using complementary surface/interface investigation techniques, the Ru incorporation in the Ru-α-Fe2O3 nanorods was evidenced. The optical band gap was found to be Ru doping concentration dependent: varying from 2.32 (2) to 2.47 (2) eV. These band gap values are well suited for the targeted water splitting process without application of an external bias.